C Tech 3D Earth Science Software

Reed D. Copsey, President C Tech Development Corporation 714-840-7444 URL: <u>www.ctech.com</u> e-mail: reed@ctech.com

December 18, 2002

Federal Remediation Technologies Roundtable Meeting

Why C Tech 3D Software

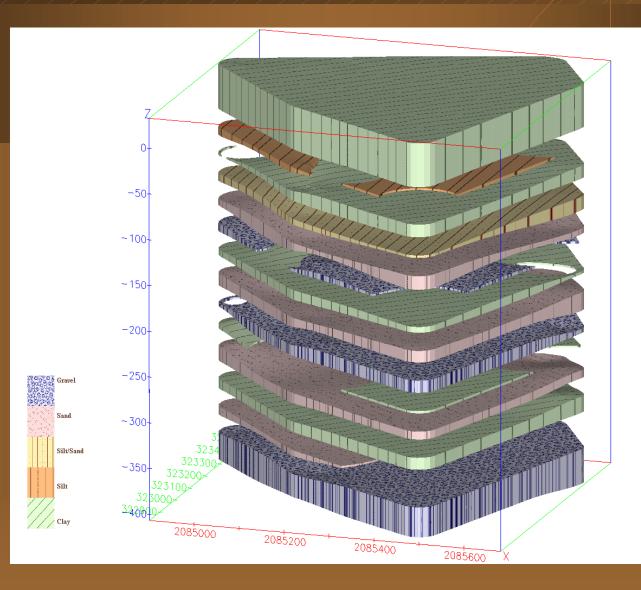
 Address Complex Technical Challenges Regulatory Issues Financial Issues Political Issues Improve Communication Between Regulatory Agencies Consultants and other Technical Personnel Public Defensible, Understandable Analysis 3D Volumetric Geostatistics True 3D Visualization & Animation

EVS Functionality

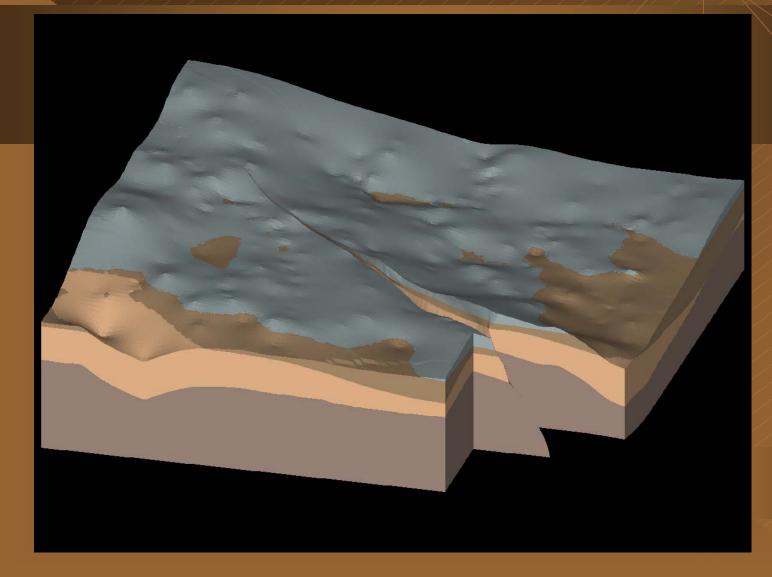
- Geologic and geophysical modeling
- Geostatistical analysis of soil, groundwater, surface water and air data
- Three-dimensional visualization and animation of models and analyses
- DrillGuide^{™:} Analytically guided site assessment and optimization.
- Well Decommission[™]: Justifiable approach for determining groundwater monitoring wells suitable for decommissioning

Interface to ESRI ArcView & ArcGIS

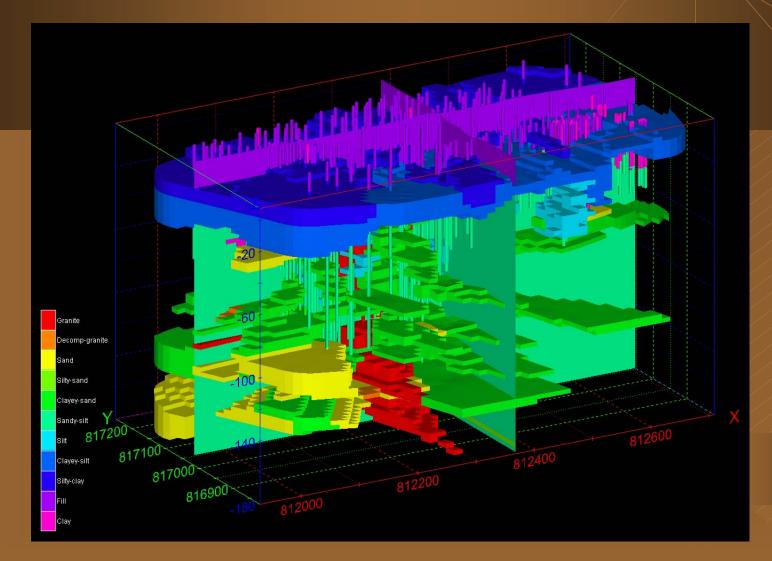
- Included ArcView/ArcGIS extensions allow you build geology and chemistry data and launch C Tech's software.
- All EVS versions can import and export 2D & 3D ESRI Shapefiles for annotation.
- Extrude polygons to create 3D volumetric representations of buildings and objects.
- Map 2D shapefiles to geologic surfaces.


Documentation and Tutorials

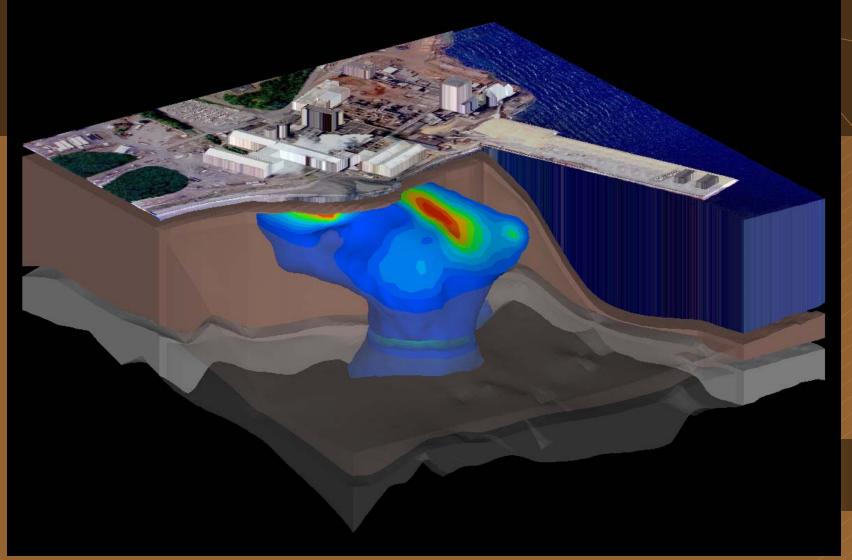
- Exhaustive on-line and context sensitive help system.
- On-line interactive tutorials for intermediate level self-training in ~16 hours


 Proven algorithms in-use by major corporations, DoE, DoD, EPA, USGS and many other government agencies

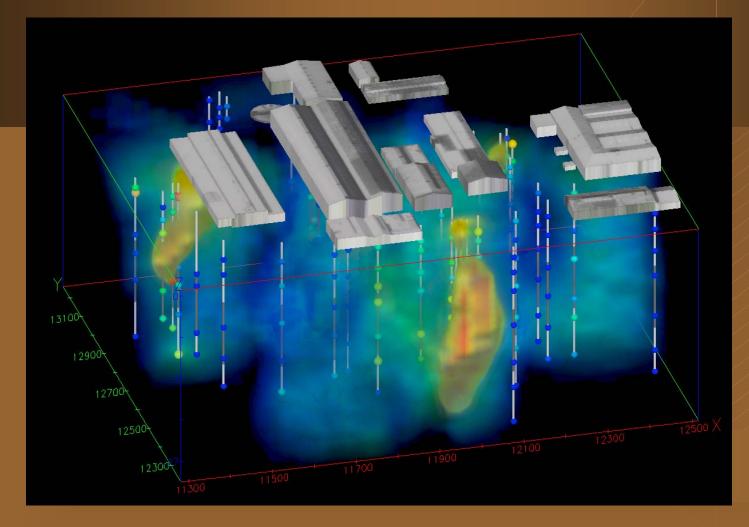
Geologic and Geophysical Modeling


Texture Mapped Site Geology

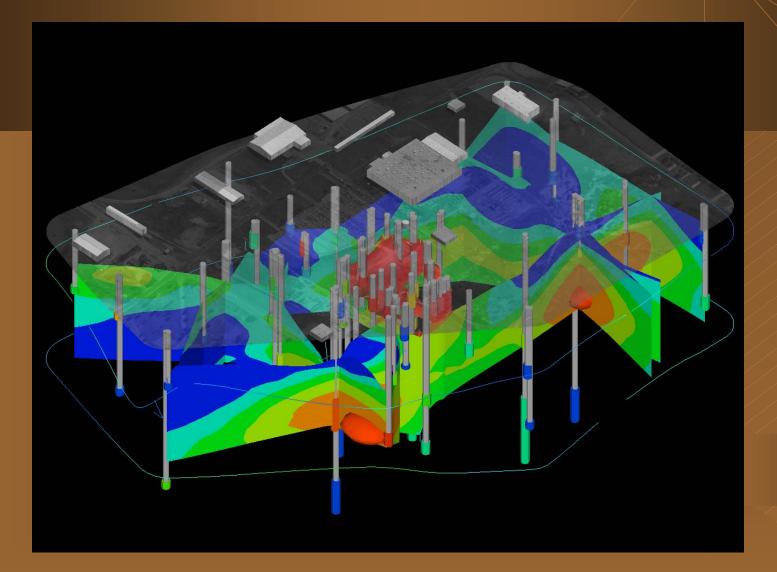
Complex Geologic Fault Modeling



Modeled with Geologic Indicator Kriging

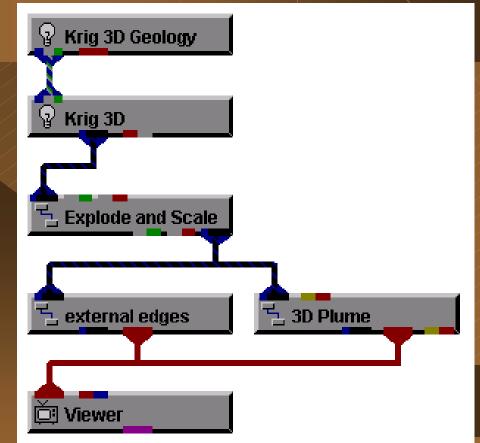


Geostatistical Analysis of Soil, Groundwater, Surface Water and Air Data

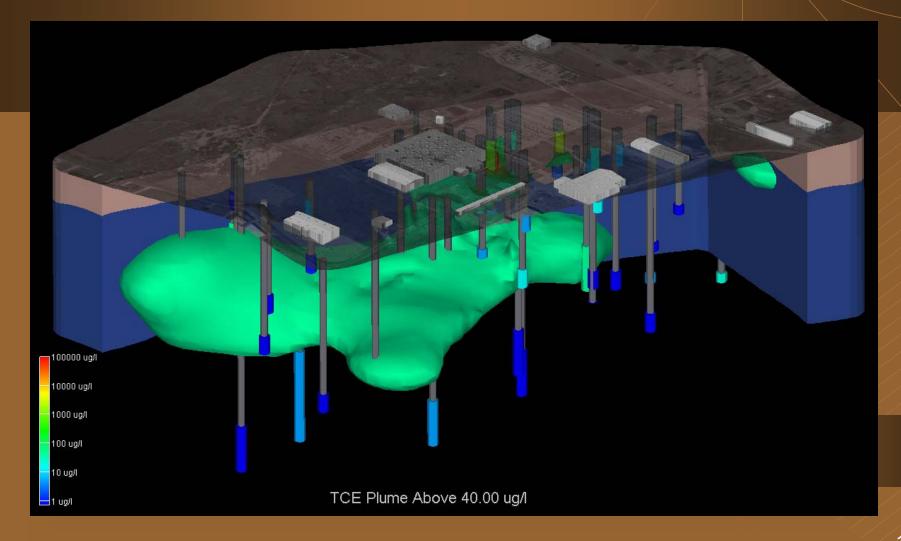

Coastal Industrial Facility

Volume Rendered Plume, Sample Data & Buildings

Groundwater Wells, Fence Diagram and Plume

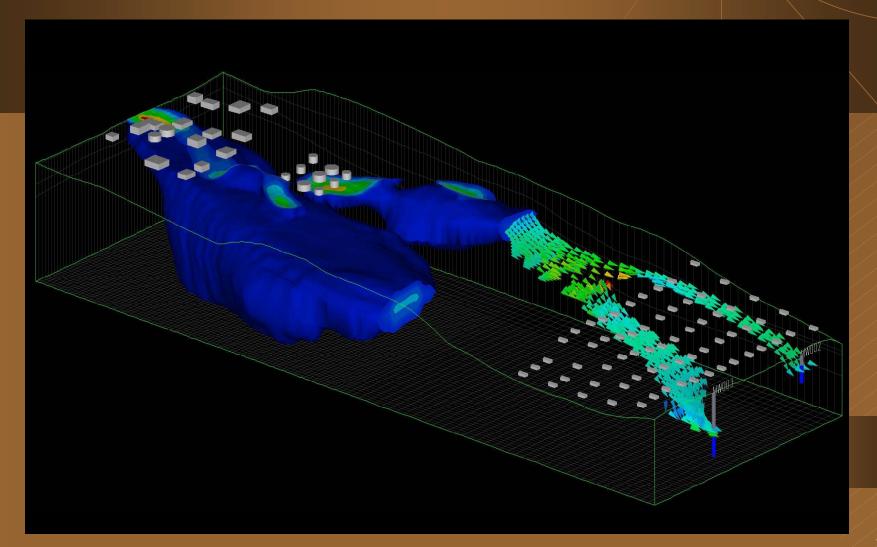


The EVS Network Paradigm: Graphical Object Oriented Programming


- Libraries with well over 170 modules.
- Each module performs data analysis or visualization functions.
- Applications are collections of modules interconnected to form networks
- Users can build their own networks, use or enhance EVS supplied applications

Example: 6-Module Network

- Krig 3D Geology: kriges surfaces
- Krig 3D: creates a 3d grid with interpolated chemistry
- Explode and Scale: zexaggeration & separation of layers
- external edges: display extents of domain or grid
- 3D Plume: isosurfaces and mapping of any attribute at any cutoff



Chemical and Geologic Data

Three-Dimensional Visualization and Animation

Plume Migration in Sand Channels

EVS Input Formats

ASCII data files for:

- Chemistry (parameter data)
- Borehole, boring logs and surface geology data

Annotation Data

- Overlay Aerial Photography
- AutoCAD DXF files
- ArcView shapefiles
- Finite difference & finite element model output
 - MODFLOW, MT3D, CFEST, etc.
 - GMS (MODFLOW, MT3D, Femwater)
 - Groundwater Vistas and Visual Modflow
- Database Connectivity
 - Access,
 - ODBC interface to dBase, Excel, FoxPro, etc.

EVS Output Options

3D Rendered Bitmap Graphic Output

Virtually All Image file formats
Animations as AVI, MPEG, HAV

3D Graphics Printing to:

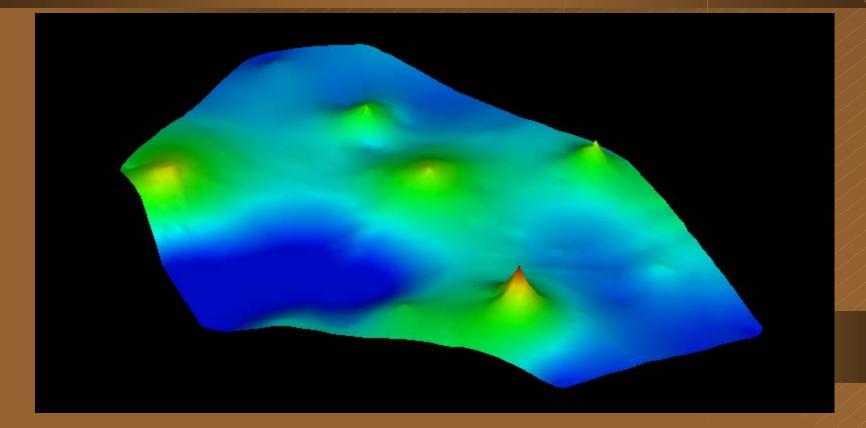
Any windows printer (color & black and white)

Vector Output

Shapefiles and AutoCAD DXF
4D Interactive Model Animations (4DIM)

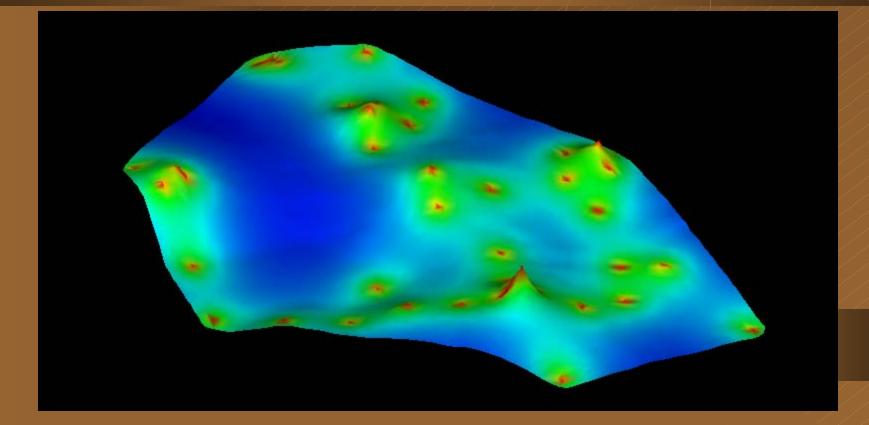
VRML 1 & 2 Output

DrillGuide[™] Analytically Guided Site Assessment

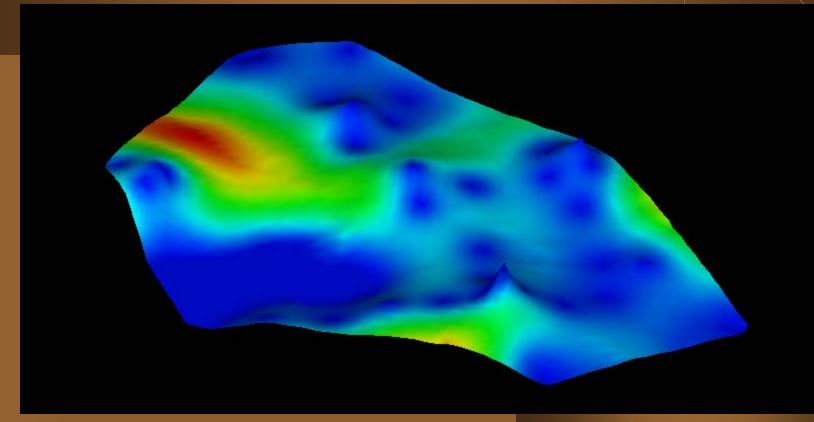

 Determine locations within a site requiring additional sampling.

 Automatically iterates to determine "n" optimal locations

 Focuses on high uncertainty regions where we predict contamination, but with low confidence.


DrillGuide[™] Concentration

 High concentration regions are mapped to (red) peaks, low areas to (blue) valleys. Region is defined by convex hull of input data.


DrillGuide[™] Confidence

 High confidence regions are mapped to (red) spots, low confidence areas are blue.

DrillGuide[™] Uncertainty

 Areas of high uncertainty (red) are regions with low confidence and high predicted concentration.

 High uncertainty regions are locations where we predict contamination, but our confidence in that prediction is low.

Well DecommissionTM

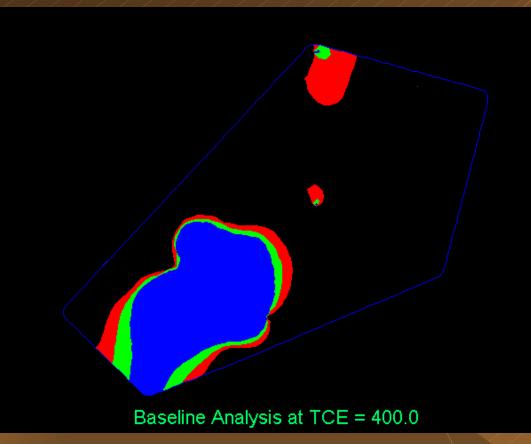
Determine groundwater monitoring wells suitable for decommissioning

Groundwater Monitoring Challenge

- Groundwater contamination sites worldwide are engaged in regular sampling of monitoring wells.
- The typical costs are \$1,500 per well per sampling event.
- Many of these wells are redundant or geostatistically insignificant and can be decommissioned.

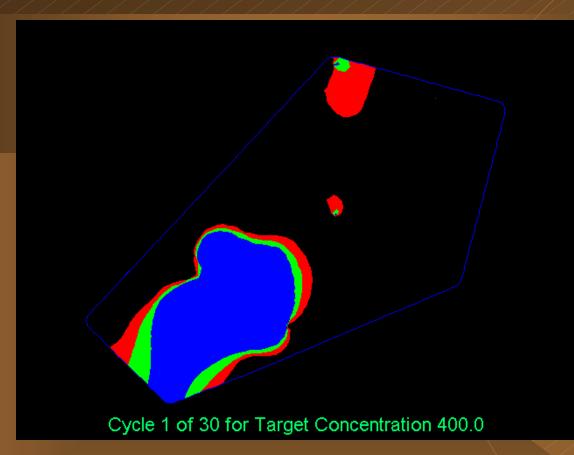
Well Decommissioning Approach

 C Tech has developed a new module in EVS-PRO called Well Decommission

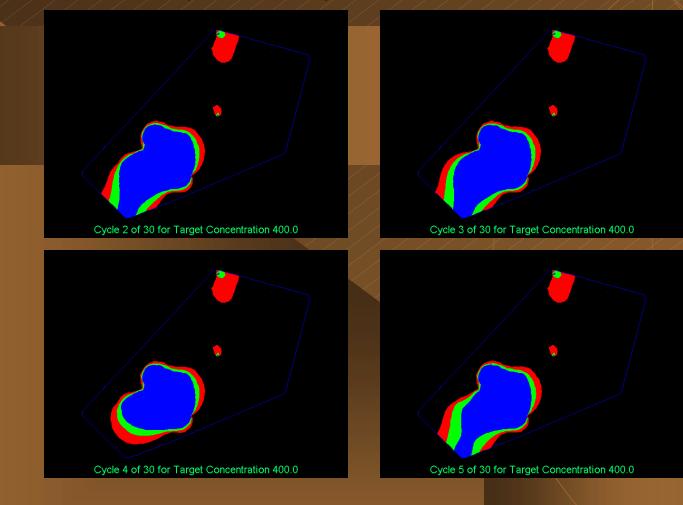

 Well Decommission analyses all available data and quantifies the impact to site assessment quality of removing each well.

 Provides area-impact and concentration-weighted area-impact of each well.

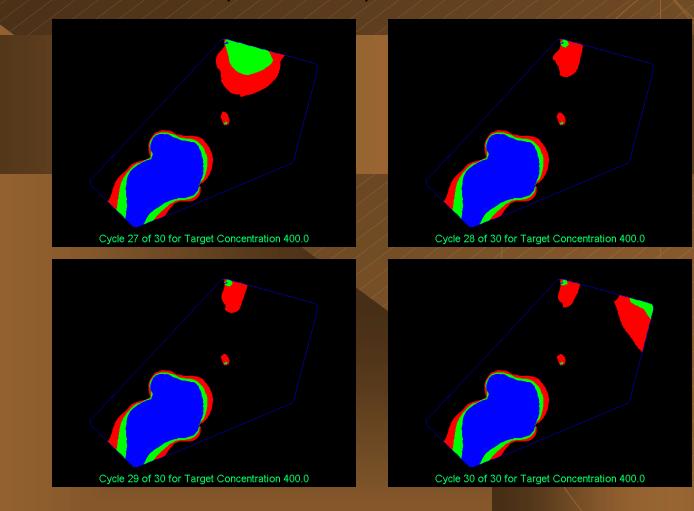
Benefits


- Well Decommission provides an easy to use method to determine which, if any, wells can be decommissioned.
- Provides graphical and tabular results.
- Can analyze the impact of multiple analytes.

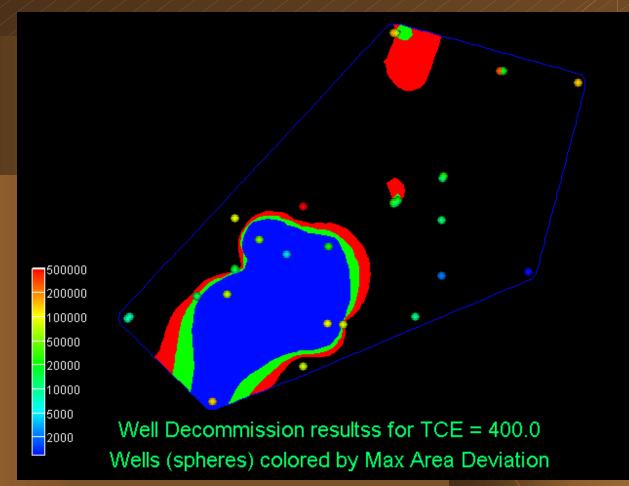
Function and Output


- Performs baseline analysis using all data
- Determines statistical variation in plume area (redmax, green-nominal, blue-minimum)

Results

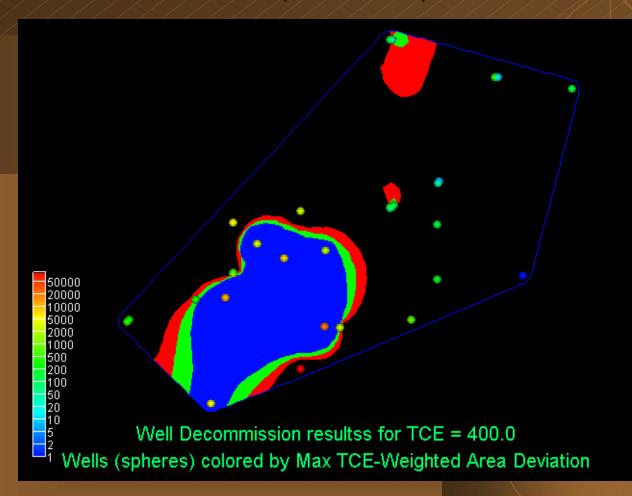

 Here we see the TCE distributions with the first well removed.

Results (continued)


…and the 2nd through 5th.

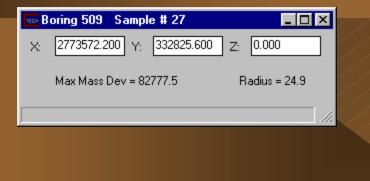
Results (continued)

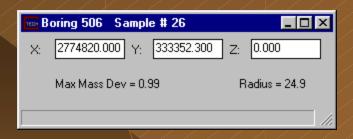
…and the 27th through 30th.


Final Results

 The final output screen shows each well colored by its impact on the total site evaluation.

Legend values are in square feet.


Final Results (continued)



 Here the wells are colored by impact on predicted site contaminant area weighted by TCE levels.

Legend values are in square feet times TCE concentration.

Significant and Insignificant Wells

Note the difference in importance between Boring 506 and Boring 509!
 Boring 506 is a prime candidate for being

decommissioned!

Function and Output (continued)

Easting	Northing	Max_Dev	Dev_of_Min	Dev_of_Nom	Dev_of_Max	Max_Mass_Dev	Dev_of_MinMass	Dev_of_NomMas	s Dev_of_MaxMas	s Well
Elevation										
30 8										
2772601.5	333091.7	7712.1875	4715.375	6556.5625	7712.1875	385.3885	53.3683	142.1629	385.3885	501
2772610.4	333100.5	9056.8125	4067.5	5891	9056.8125	244.1011	36.0243	93.2116	244.1011	417
2772982.4	333214.1	15410.5	3362.5	8601.25	15410.5	339.0013	19.497	90.0557	339.0013	410
2773069.9	332631.8	133954.9375	117973.75	133954.9375	102679.6875	3787.3275	505.1796	1389.7574	3787.3275	510
2773149.9	333225.7	66315.6563	66315.6563	26816.25	7433.625	11094.2833	1755.8213	4360.1715	11094.2833	413
2773192.1	333368	20042.9375	1671	6806.8125	20042.9375	523.4565	5.9725	104.2514	523.4565	402
2773192.5	333361.4	8460.125	8460.125	7012.5625	5644.375	5683.4908	887.3185	2225.705	5683.4908	307-8
2773196.2	333647.9	90579.1875	5174.875	16799.25	90579.1875	4813.269	698.0193	1827.028	4813.269	6
2773326.6	333529.3	45487.1875	45487.1875	45241.25	22116.875	3184.0666	802.6611	1556.823	3184.0666	412
2773480.4	333449.2	3998.625	3057.125	779.0625	3998.625	7533.7011	744.2657	2431.8874	7533.7011	411
2773570.2	333713.2	464434.75	44003.8125	194599.6875	464434.75	2495.9918	423.2028	1063.0164	2495.9918	305-S
2773572.2	332825.6	72971.25	72971.25	39625.375	20408.375	82777.4915	9112.0425	27193.6758	82777.4915	509
2773708.8	333065.2	96146.9688	96146.9688	57479.6875	34675.1875	20115.989	3469.7635	8199.668	20115.989	406
2773713.9	333494.8	24279.75	24279.75	23357.3125	4114.6875	2196.0684	441.1689	985.0665	2196.0684	306
2773797.1	333060.9	79827.625	38281.1875	63385.25	79827.625	2194.5692	562.5733	1117.5803	2194.5692	405
2774073.1	333738.4	32259.5625	1888.375	3915.5	32259.5625	441.5857	74.3096	182.4266	441.5857	403
2774073.7	334671.8	155261.6875	1800.75	32134.25	155261.6875	139.1616	0.8392	17.2493	139.1616	503-S
2774076.5	333728.3	18749.0625	10463.1875	18749.0625	6570.875	84.6152	4.692	7.8152	84.6152	415
2774085.3	333736.6	10911.625	89.6875	863.375	10911.625	86.5976	13.2951	32.3635	86.5976	303-S
2774087.2	334674.8	64809.5	408.0625	6232.125	64809.5	39.9442	0.1864	3.0341	39.9442	503-D
2774094.7	333745.8	24116.8125	279.75	2408.375	24116.8125	171.4115	34.8032	78.7722	171.4115	303-D
2774194.8	333100.9	10774.5625	112.1875	1341.125	10774.5625	646.0969	100.2245	253.8854	646.0969	408
2774338.3	333327.8	2291.75	144.125	1704.75	2291.75	207.4173	30.9924	78.7436	207.4173	300
2774341.9	333638.3	12021.625	315.375	1523.125	12021.625	164.3233	27.7484	67.8932	164.3233	302
2774344.3	333870.5	13161.75	285.4375	766.6875	13161.75	38.6314	8.1736	19.4253	38.6314	502
2774352.8	333882	26187.8125	967.5625	4.1875	26187.8125	7.5059	1.1213	2.4146	7.5059	416
2774664.2	334463.8	263568.75	456.9375	137341.6875	263568.75	356.5466	0.2104	80.2273	356.5466	504-D
2774677	334462.1	20480.625	16.375	494.9375	20480.625	11.4954	0.0072	0.2888	11.4954	504-S
2774820	333352.3	1187.0625	33.125	888.125	1187.0625	0.9933	0.0148	0.4147	0.9933	506
2775092.1	334397.8	138322.3125	77.1875	22677.5	138322.3125	160.5222	0.0348	9.5631	160.5222	505

Tabular output for all 8 quality measures is provided.

Well Decommission Conclusion

- Well decommission technology provides a justifiable approach for determining candidate wells for decommissioning.
- Well Decommission can save thousands of dollars per year for each well identified for decommission.

 Well Decommission is one of many capabilities in EVS-PRO