Nanotechnology Approaches to Sensing and Detection

Dr. James S. Murday Dr. Richard J. Colton Naval Research Laboratory Washington, DC 20375-5342 rich.colton@nrl.navy.mil

Nanocalorimeter; Roukes CIT

GMR Biosensor; Whitman/Prinz, NRL

Target Molecule Probe Molecule Gold Silicon Nitride or Silicon Target Binding Chip Chip Chip

Cantilever Sensor; Thundat ORNL

•Signal to noise improvements: yocto(10⁻²⁴)joule,

atto(10⁻¹⁸)newton,

single molecule,

- Miniaturization size/weight arrays
- Lower power, potentially scavenged
- Locally process data into information

NanoAu Chemiresistor; Snow NRL

Lab-on-a-chip; Sandia

Molecular Motor; Montemagno Cornell

Nanotechnology Approaches to Sensing & Detection

Outline

- Approaches
 - Electron tunneling transducers (STM inspired)
 - Micromechanical detection (AFM inspired)
 - Nanowire/tube
 - Nanoparticle
- Power sources
- Looking ahead

Micromechanical Approaches – AFM inspired

Thundat	ORNL	Protiveris – VeriScan 3000	
Lang	IBM Zurich	Concentris – Cantisens	
		Veeco - Scentris	
Bashir	Purdue		
Craighead	Cornell		
Fadel	Univ Bordeaux		
Majumdar	UCB		
Whitman	NRL		
Ziegler	Univ Kaiserslautern		

Cantilever Sensor Array Bibliography - http://www.veeco.com/pdf/CSA_Bibliography.pdf

Micromechanical Sensing & Detection

H.P. Lang, et al., Anal. Chim. Acta 393, 59 (1999)

. berger ', On. Gerber', J.K. Ginizewski', H.J. Guntherout', H.F. Lang ', E. Meyer

* IBM Research Division Rüschlikon, Säumerstr. 4, 8803 Rüschlikon, Switzerland.

[†], Institute of Physics, Univ. Basel, 4056 Basel, Switzerland

Cantilever Array-based Artificial Nose

M.K. Baller, et al., Ultramicroscopy 82, 1 (2000); F.M. Battiston, et al., Sensors & Actuators 77, 122 (2001)

Force Amplified Biological Sensor

1 of 2 4-cantilever dies

4-Layer Flexible Circuit and Aluminum Enclosure

FABS Assay for Ovalbumin at 1 ng/mL

Before magnetic field

After magnetic field

D.R. Baselt, et al. *JVST B* **14**, 789 (1996); *Proc. IEEE* **85**, 672 (1997)

Nanowire/Nanotube Approaches

Dai	Stanford
Dekker	Delft (ND)
Grimes	Penn State
Lieber	Harvard
Snow	NRL
Valentini	Univ Perugia (IT)

Chemical sensing with C nanotube networks E.S. Snow and F.K. Perkins

- •Sensor based on capacitance of SWNT network
- •Detection via field-induced polarization of adsorbates on SWNT surface
- •Fast, low-power, and highly sensitive
- •Responds to CWAs, TICs and explosives
- •Chemical specificity achieved using chemically selective coatings
- •Functionalized arrays for detection and identification

P/P ₀ = 0.03 %	Acetone
0.012 %	
0.003 %	

III. Biosurfaces on III-V Substrates for bioFETs

An ideal surface chemistry would:

 Preserve the electronic integrity of the underlying substrate while remaining thin enough for efficient sensing (~2 nm).

- 2. Allow for specific attachment of DNA or protein molecules.
- 3. Resist the nonspecific adsorption of other biological materials (lower background & false positives).

For many substrates (e.g. InAs, GaN), no such chemistry currently exists.

(Nano)particle Approaches

Alivasatos	UCB
Mirkin	Northwestern
Snow	NRL
Whitman	NRL
Lu	Univ Ill
Tan	Florida
Tan	Nanyang Tech Univ (PRC)

Quantum Dot Corp – QDot Bioconjugates Nanosphere, Inc - Verigene Microsensor Systems, Inc Seahawk Biosystems

Detection of Explosives (RDX) in Seawater

- Prepare QDs conjugated with anti-RDX antibodies
- Measure PL of QD-bioconjugates bound to a surface prepared with RDX analogs
- Free RDX competes for bioconjugate and reduces PL signal

E.R. Goldman, et al., *Anal. Chim. Acta* **457**, *13* (2002) NRL, Code 6900 Also in solid & water environmental samples E.R. Goldman, et al., *Environ. Sci. Technol.* **37**, 4733 (2003)

Gold Nanocluster Chemical Sensor

H. Wohltjen & A.W. Snow, Anal. Chem. 70, 2856 (1998)

Hybrid Silicon Chip Integrated MIME CW Agent Detection System

Objective:

• Accelerate miniaturization of new gold cluster based toxic chemical vapor detection system from a printed circuit board configuration to a light weight/small volume hybrid silicon chip integrated package with an ultralow power requirement.

Description:

• An ensemble of nanometer scale gold clusters serves as a highly sensitive and selective solid-state element for adsorption of chemical species and transduction to an electronic signal.

Description of Effort:

- This proposal is a joint NRL-MSI effort to fabricate an integrated detector system as a silicon chip hybrid:
- Integration of gold cluster vapor sensitive materials and transduction mechanism with planar silicon technology
- Fabrication of sensor and supporting components (electronics, microprocessor, etc.) on separate silicon chips connected by vapor lines and pneumatics
- Design for minimal power consumption (mW)

Benefit to Warfighter/First-Responders:

• Small size, light weight and low power consumption of this detector system permit unobtrusive incorporation into a garment, helmet or on a UAV.

Challenges:

- Develop self-assembly chemistry for incorporation of gold cluster vapor responsive component into a silicon chip
- Reduce of supporting electronics and microprocessor functions to integrated silicon chip package
- Miniaturization/incorporation of vapor lines and pneumatics
- Integration/programmed electronic control of detector system

Maturity of Technology: Applied Research (6.2)

Business Area: Chemical Point Detector

NRL POC: Dr. Warren Schultz, 202-767-2479 Dr. Art Snow, 202-767-5341

Single Molecule Biosensors

Force Discrimination Assay

Biosensor Platforms

Piezoresistive cantilever **FABS**

D.R. Baselt, *et al., Proc. IEEE* **85**, 672 (1997) Transparent substrate Magnetoresistive with optical detection elements **FDB BARC**

G.U. Lee, *et al.*, *Anal. Biochem.* **287**, 261 (2000)

M.M. Miller, *et al., J. Mag. Mag. Mat.* **225**, 138 (2001)

Bead Array Counter

- Demonstrated sensitivity <1 fM in ~30 min total assay time
- Integrated prototype completed, licensed for environmental monitoring (Seahawk Biosystems)

J.C. Rife, et al., Sensors & Actuators A 107, 209 (2003)

Power Sources

NSF MPS-IC Workshop on Approaches to Combat Terrorism 19-21 Nov 2002

Opportunities for Basic Research in Energy and Power Sources

http://www.nsf.gov/pubs/ 2003/nsf03569/nsf03569 .htm

Smart Dust K. Pister, UC Berkeley K.E. Swider-Lyons & coworkers, "Power Sources for Nanotechnology," *Int. J. Nanotechnology* **1**, 149 (2003)

Replacing conventional battery architecture with new 3-dimensional nanostructured architecture ...

D.R. Rolison & coworkers, *Nature* **406**, 169-172 (2000)

...to achieve higher battery capacity and energy density

Looking Ahead

- Nanoscience
 - Single molecule imaging, spectroscopy (e.g., near-field vibrational spectroscopy), force measurements (e.g., binding affinity) & manipulation (via probes & tweezers)
 - Sample collection & handling issues for 'single molecule sensors'
 - TeraHz standoff imaging and detection
- Nanomaterials
 - Nanoparticles & rods (e.g., barcoded molecules)
 - Nanostructured materials (e.g., aerogels & tubules) for sensing and energy storage/generation
 - Top-to-bottom functional design (e.g., directed self-assembly of organized networks of nanoparticles)

R. Murray & coworkers, *JACS* **124**, 8958 (2002); D.R. Walt, *Nature Mater.* **1**, 17 (2002)

Rolison & Dunn, *J. Mater. Chem.* **11**, 963 (2001)

J-B.D. Green, Anal. Chim. Acta **496**, 267 (2002)

C.A. Mirkin & coworkers, *Science* **301**, 1884 (2003)

Looking Ahead

Nano(bio)electronics

- Biotic: Abiotic interface studies
- Magnetoelectronics
- Natural & synthetic ion channels & pores

Poly (dC)

D.W. Deamer & D. Branton, Acc. Chem. Res. 35, 817 (2002)

Biosensors (\rightarrow **BioNEMS** & other NanoDevices)

- Micro- & nano-fluidics (i.e. sample collection/delivery)
- Specialty proteins (e-protein; QD-protein)
- Single molecule detection; single molecules as sensors
- Lsboratory on a Chip

rich.colton@nrl.navy.mil

Recoil

Recoil

Drive

Recoil

Gather

