

Revisions to FRTR Screening Matrix & Reference Guide

FRTR Winter Meeting 9 December 2004 Washington D.C.

Background

- Screening Matrix (SM) developed as a userfriendly tool for screening potentially applicable remediation technologies
- SM allows screening of many in situ and ex situ technologies for either soil or groundwater remediation

Background (cont)

- Screening variables include
 - > contaminant class
 - development status
 - treatment train
 - overall cost and performance
 - availability
- Reference Guide (RG) provides in-depth information on each technology
- SM and RG are posted on the FRTR website
 - living document
 - direct links to database of FRTR member provided cost and performance reports

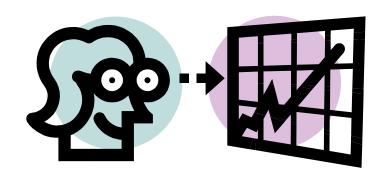
- Active SM Committee includes members from six FRTR member agencies and Interstate Technology & Regulatory Council (ITRC)
- Most recent SM update funded by US Army Environmental Center (USAEC)
- Previous updates included funding support from several member agencies

Member Agency Support (cont.)

- USAEC Acquisition and Technology Division manages SM updates in close coordination with members of SM Committee
- Committee initiated revision of SM for the following reasons:
 - Technical data outdated; format confusing
 - Cost information unclear, outdated, and inconsistent
 - ➤ Many web links "broken"

Review Process

Five Phases Review Process for SM


Phase I – Identify new technology listings

Phase II – Review Technology Profiles

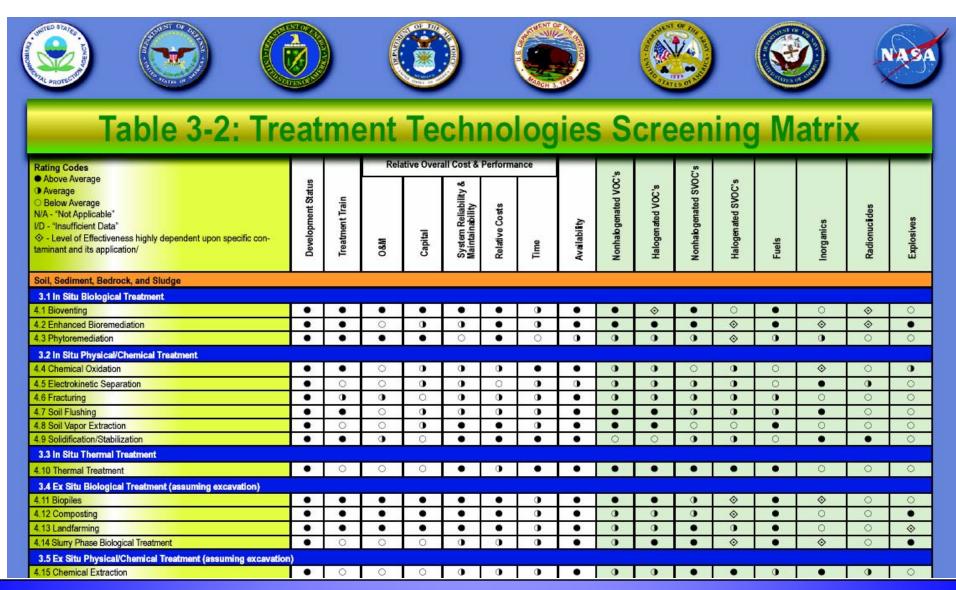
Phase III – Review Introduction, Contaminant Perspectives, Technology Perspectives

Phase IV – Review References, Appendices, Preface, and Rating Codes

Phase V – Review Final Product

Current Efforts

- Continue to update technology profiles
- Create a user-friendly format compare/contrast multiple technologies
- Update cost estimates for selected technologies



SM/Poster Revisions

- Establish consistent and uniform rating scale
- Display only three main ranking symbols similar to the Consumer Report format:
 - = Above Average
 - Average
 - = Below Average
- Eliminate and/or consolidate some categories to simplify use of legend and definitions

Revised Matrix

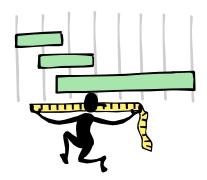
Cost Updates

- Cost data became outdated and estimates were not readily reproducible.
- Improving the Estimates
 - ➤ Utilize a standardized cost estimating tool (RACER) to provide a systematic, reproducible process to develop ranges of cost estimates for technologies at sites of varying complexity
 - Present results in manner to aid all levels of SM users

RACER Approach

- The non-RACER users would be provided a simple range of costs for a standard range of site conditions – allows some very top-level comparisons.
- More detail oriented SM user can dig deeper and see a listing of the key parameters impacting total cost.
- Most detailed level of information is accessible to allow the more RACER proficient SM user to see all the significant cost elements that contribute to total cost.

RACER Approach (cont)


- RACER has been utilized for several technologies to develop updated ranges of cost estimates, including the primary aspects of the cost drivers
- The site conditions were defined as follows:
 - Multiple scenarios (usually 4) for technology application utilized in RACER to develop the range of costs
 - Scenarios developed with varying complexity and scale of application
 - A standard "mini-matrix" was established that defines technology application varying between small/large sites with either simple/complex conditions

RACER Based Mini-Matrix

RACER PARAMETERS								
(BIOVENTING)	Scenario A	Scenario B	Scenario C	Scenario D				
(BIO VENTING)	Smal	l Site	Large Site					
Type of Installation	Vertical Well	Vertical Well	Vertical Well	Vertical Well				
Surface Area of Contamination (SF)	2,700	450	54,000	9,000				
Depth to Base of Contamination (ft)	5	30	5	30				
Contaminant of interest	SVOCS	svocs	SVOCs	SVOCs				
# of Vapor Extraction Wells	8		143	24				
Bioventing Marked-up Costs	/\\$\\\\$\\\35,\\\\378	\$23,930	\$360,956	\$125,772				
Additional Costs:								
O&M	\$35,978	\$35,978	\$88,076	\$88,076				
Years of O&M	2.0	2.0	5.0	5.0				
Remedial Design	\$10,000	\$10,000	\$36,096	\$13,835				
TOTAL MARKED-UP COSTS	\$81,356	\$69,908	\$485,128	\$227,683				
COST PER CUBIC FOOT	\$6.03	\$5.18	\$1.80	\$0.84				
COST PER CUBIC METER	\$212.8	\$182.9	\$63.4	\$29.8				
COST PER CUBIC YARD	\$162.7	\$139.8	\$48.5	\$22.8				

Future Efforts

- Continue the RACER-based cost update approach for applicable technologies
- Future benefits of this approach:
 - ➤ Standardized approach that would allow for reproducible updates in the future
 - RACER updates account for innovations and inflation

Future Efforts (cont)

Post "Revised SM" on the FRTR website

 Continue to coordination and involvement with SM Committee members to keep SM as a valuable and relevant tool

Support Effort

We need support of all member agencies to make sure SM updates are completely successful, timely and relevant

- ✓ Leveraging of resources and funds
- ✓ Committee member representation and active participation

Questions?

Layne Young
US Army Environmental Center
(410) 436-6862 (v)
(410) 436-6836 (f)
layne.young@us.army.mil

Additional Slides

Previous Screening Matrix

Table 3-2: Treatment Technologies Screening Matrix

Rating Codes - Better; - Average; - Worse; - See definition Y - Yes; N - No. F - Full; P - Pilot. S - Solid; L - Liquid; V - Vapor. NA - Not Applicable I - Inadequate. O&M - Operation & Maintenance; Cap - Capital; B - Both Soil, Sediment, Bedrock, and	Development Status	Treatment Train [excludes off-gas treatment]	Residuals Produced	0&M or Capital Intensive	Availability	System Reliability/ Maintainability	Cleanup Time	Overall Cost	Nonhalogenated VOCs	Halogenated VOCs	Nonhalogenated SVOCs	Halogenated SVOCs	Fuels	Inorganics	Radionuclides	Explosives
3.1 In Situ Biological Treatment																
Bioventing	F	И	N	И			0			\Q		Δ		Δ	\	Δ
Enhanced Bioremediation Aerobic Anserobic	F	И	И	0&M		0	0					\Q		♦	♦	
Phytoremediation Enhanced Rhizosphere Biodegradation Phyto-accumulation Phyto-degradation Phyto-tabilization	F	N	L,S	И	0	<u> </u>	_	•	0	0	0	♦	0	0	_	Δ

SM Committee

- Robert Nash, NFESC
- Tanwir Chaudry, Intergraph
- Maj. Ivette O'Brian, AFCEE
- Andrea Leeson, OSD
- Gerald DiCerbo, DOE
- John Quander, EPA

- George Nicholas, NJDEP (ITRC)
- Robert Mueller, NJDEP (ITRC)
- Greg Mellema, USACE
- Matthew Chambers, Malcolm Pirnie
- Scott Hill, USAEC
- Layne Young, USAEC