

Federal Remediation Technologies Roundtable General Meeting

Case Study: NDMA Treatment at NASA White Sands Test Facility

Michael Zigmond, PE NASA Environmental Engineer December 6, 2006

Outline

- History of groundwater contamination at WSTF
- Health risk of NDMA
- Analytical methods for NDMA
- Treatment standards
- Description of plume
- WSTF pump-and-treat system
- NDMA treatment results
- Future Plans

Introduction

- WSTF groundwater has been contaminated as a result of historical rocket engine testing operations.
- Contaminants of concern:
 - N-Nitrosodimethylamine (NDMA)
 - N- Nitrodimethylamine (DMN)
 - Trichloroethene (TCE)
 - Tetrachloroethene (PCE)
- Several Freon compounds Dec. 6, 2006

Origins of NDMA Contamination

- Rocket fuels used at WSTF included Aerozine-50 (A-50)
 - Blend of 50% hydrazine, 50% unsymmetrical dimethyl hydrazine (UDMH).
- Treatment of Aerozine-50, followed by discharge to grade.
- Discharges occurred from the 1960s to the early 1970s.

Origins of NDMA Contamination

- Sources of waste A-50:
 - Purging of fuel lines
 - Decon water
 - Off-spec fuel

- Unreacted NDMA from synthesis of UDMH
- Waste A-50 was diluted with water, treated with calcium hypochlorite, then discharged to grade.

Initial Discovery of NDMA at WSTF

- WSTF initially screened groundwater samples with RCRA Appendix IX analytical Method 8270
- Method 8270: NDMA detection limit = 10,000 ppt
- In 1987, ~ 15,000 ppt NDMA was detected in two WSTF monitoring wells

Modified Method 607 NDMA Analysis

- WSTF worked with Southwest Research Institute (SwRI) to improve the detection limit of Method 607.
- SwRI modified Method 607 by using a GC with mass spectrometer as a detector.
- This modification is allowed by the Method 607 procedure.
- WSTF uses this method for known high concentration NDMA in groundwater and treatment system influent.

SwRI Low-Level NDMA Analysis

- At NASA's request, SwRI developed a low-level analytical method using:
 - High resolution gas chromatograph
 - High resolution mass spectrometer
 - Deuterated internal standards
- This method has been approved for use in California by the California Department of Health Services (CalDHS).
- NMED has approved of our use of CalDHS's criteria for selecting an alternative NDMA analytical method.
- WSTF uses this method for treatment system effluent.

Comparison of NDMA Analysis Methods

Method	Technology	MDL (ppt)
8270	GC/MS	10,000
8070	GC-NPD	150
607	GC-NPD	150
607 modified	GC/MS	5
NDMA-LL	HRGC/HRMS	0.2
521	SX/GC/MS/MS	0.28

Cancer Risk of NDMA

- EPA classifies NDMA as a probable human carcinogen.
- NDMA Oral Slope Factor = 51 (mg/kg/day)⁻¹
 ~ 100 times greater than TCE & PCE
- Using EPA exposure assumptions, 1.7 ppt NDMA = 1 x 10⁻⁶ cancer risk.
- NMED health risk guidance uses a 6-yr child exposure, followed by 24-yr adult exposure. Using this guidance, 1.3 ppt NDMA = 1 x 10⁻⁶ cancer risk.

Cancer Risk of NDMA at Various MDLs

Method	Detection	30-Year	6-Year Child,
	Limit	Adult	24-Year Adult
	(ppt)	Cancer Risk	Cancer Risk
8270	10,000	5.9 x 10 ⁻³	7.6 x 10 ⁻³
8070	150	9.0 x 10 ⁻⁵	1.1 x 10-4
607	150	9.0 x 10 ⁻⁵	1.1 x 10-4
Mod. 607	5	3.0 x 10-6	3.8 x 10-6
NDMA-LL	0.2	1.2 x 10-7	1.5 x 10-7

- NMED set treatment standards for NDMA & DMN at 10 ppt (using Method 607).
- NMED also has a cumulative cancer risk standard of 1 x 10⁻⁵
 - NDMA, DMN, TCE, and PCE contribute to cumulative cancer risk.
 - This forces WSTF to treat NDMA to much less than 10 ppt.

- Six extraction wells, with total design flowrate of 1,076 gpm
- Dual-wall HDPE pipeline (untreated water)
- Treatment facility
 - Two sieve tray air strippers in parallel
 - Filtration to remove particulate / turbidity > 1 μm
 - One UV oxidation reactor

- Single-wall HDPE pipeline (treated water)
- Four injection wells
- System designed for unattended operation
 - SCADA system monitors flowrate at each well, operation of treatment equipment, leak detection cable in dual-wall pipe
 - Alarm or system shutdown if problem is detected

UV Reactor Internals

Current Status

- Total Design & Construction Cost: ~\$9 M
- Injection well rehab & shakedown testing from Sept. 2004 thru Sept. 2005
- Operation from Sept. 2005 thru Aug. 2006
 - Currently shut down for injection well rehabilitation, and changes to injection piping

NDMA Concentrations and System Flowrate September 2005 - July 2006

Cumulative Cancer Risk

	Influent	Effluent
May 2006	3.6 x 10 ⁻³	8.7 x 10 ⁻⁶
June 2006	3.5 x 10 ⁻³	8.3 x 10 ⁻⁶
July 2006	3.3 x 10 ⁻³	8.3 x 10 ⁻⁶

Future Plans

- Design & install treatment system for midplume area
- Continue investigation of source areas
- Follow developments in NDMA remediation and analytical technology

Conclusions

- Cancer risk of NDMA is the driving force behind remediation of WSTF's groundwater.
- Due to its chemical properties and cancer risk, NDMA is difficult and expensive to measure and treat.