Nanotechnology at EPA: Focus on Remediation

Stephen Lingle National Center for Environmental Research Office of Research and Development

9 June, 2004

Federal Remediation Roundtable

EPA Nanotechnology Research

applications

- •Green manufacturing
- •Green energy
- Sensors
- Treatment
- Remediation

implications

- Toxicology
- •Fate, transport, and transformation
- •Exposure, bioavailability, and bioaccumulation

RESEARCH & DEVELOPMENT

EPA Research Programs for Nanotechnology

 STAR competitive research grants to academia ~ \$ 5 M /yr

 SBIR competitive research contracts to small companies ~
\$.5 – 1 M/yr

RESEARCH & DEVELOPMENT

Nanotechnology & SBIR

• Phase I, \$70K

- "Nanocomposite-Based Filter for Arsenic Removal in Drinking Water" – Materials Modification, Inc.
- "Nano Alumina Arsenic Filter", Argonide Corp., 2003
- "Development of High Surface Area Material and Filter Media" – eSpin Technologies, Inc., 2003
- "Multi-Analyte Nanoelectronic Air Pollutant Sensor" – Nanomix, Inc, 2004
- Phase II, \$300K
 - "Nanoparticle Enhanced Immunoassay for Monitoring Organic Pollutants" – Intelligent Optical Systems, 2004

RESEARCH & DEVELOPMENT

Nanoparticle Enhanced Immunoassay for Monitoring Organic Pollutants, Intelligent Optical Systems, Phase II - \$300K

Information on lines identified with a vertical line (|) in the right margin is CONFIDENTIAL PROPRIETARY INFORMATION

Flow cell and membranes for multiple assay target detection. Depiction of a "microtiterplate like" arrangement with multiple light sources and detectors for the assay of multiple contaminants.

RESEARCH & DEVELOPMENT

STAR Research on Nanotechnology Applications

Solicitations in 2001 and 2002: 32 Projects, \$11M

- Green Manufacturing 7
- Remediation 6
- ➤ Sensors 11
- Treatment 4
- > Aerosols –2

Environmental Implications – 2

RESEARCH & DEVELOPMENT

Nanotechnology & STAR -Remediation

- "Dendritic Nanoscale Chelating Agents: Synthesis, Characterization, Molecular Modeling and Environmental Applications" - *Mamadou Diallo Howard University, 2002*
- "Membrane-Based Nanostructured Metals for Reductive Degradation of Hazardous Organic at Room Temperature" - *Dibakar Bhattacharyya University of Kentucky, 2002*
- "Nanoscale Bimetallic Particles for In Situ Remediation" Wei-xian Zhang, Lehigh University, 2002
- "A Bioengineering Approach to Nanoparticle Based Environmental Remediation" *Daniel Strongin, Temple University, 2002*
- "Functional Fe(0)-Based Nanoparticles for *In Situ* Degradation of DNAPL Chlorinated Organic Solvents" *Gregory Lowry, Carnegie Mellon University, 2003*
- "Nanostructured Catalytic Materials for NOx Reduction Using Combinatorial Methodologies" - Selim Senkan, University of California, Los Angeles, 2003

RESEARCH & DEVELOPMENT

Nanotechnology & STAR -Treatment

- "Synthesis, Characterization and Catalytic Studies of Transition Metal Carbide Nanoparticles as Environmental Nanocatalysts" -Ismat S. Shah, University of Delaware, 2002
- "Simultaneous Environmental Monitoring and Purification through Smart Particles" - Wolfgang Sigmund, University of Florida, 2002
- "Nanoscale Biopolymers with Tunable Properties for Improved Decontamination and Recycling of Heavy Metals" - *Wilfred Chen, University of California, Riverside, 2002*
- "Use of Ozonation in Combination with Nanocomposite Ceramic Membranes for Controlling Disinfection By-Products" Susan Masten, Michigan State University, 2003

RESEARCH & DEVELOPMENT

Applications: Treatment/ Remediation

Remediation of Groundwater

TCE reduction with nano Iron

•Oxidation of pollutant enhanced by coupling with other metals (Fe/Pd)* on the nanoscale.

•Smaller size penetrates difficult to access areas; large reactive surface area.

RESEARCH & DEVELOPMENT

Applications: Treatment/ Remediation

Protein-encapsulated iron oxide particles for cleanup of organics

Ferritin spherical protein cage (120 μ) with Fe₂0₃)

This research involves the development of catalysts for the reduction of chlorinated compounds using a variety of homogeneous nano-sized metal and metal oxide particles. Zero-valence Fe particles within a protein cage were tested. Daniel Strongin, Temple University

RESEARCH & DEVELOPMENT

More Information

- NCER web site contains abstracts and progress/final summaries for all funded projects.
- <u>www.epa.gov/ncer</u>
- "Search" -- nanotechnology

RESEARCH & DEVELOPMENT

Future Research

- Currently focusing on risk assessment
 - Exposure; health and environmental effects
- Possibility for collaboration with other agencies on remediation

RESEARCH & DEVELOPMENT