Environmental Technologies at the Nanoscale

Nano Iron Particles for Remediation

Nanoparticles as Superreactants

Nano Iron Particles (TEM)

Nano Fe

Properties of Nano Fe

Nominal Reaction Rate (Ω) 0.1-100 mg TCE/g nanoFe/hour (>1,000 X better)

@ 22 C@ 1-100 mg/L TCE @ pH=7

Contaminant Transformation

Chlorinated MethanesCr(VI)Chlorinated EthenesPb(II)Chlorinated EthanesNi(II)Chlorinated BenzenesCd(II)PCBsPerchlorateLindane (HCHs)As

> 70 compounds tested at Lehigh so far

A Field Demonstration - NC

CONCEPTUAL DIAGRAM OF GROUNDWATER FLOW

Conceptual Model

Sampling Results (TCE)

Simple Installation Techniques: Braced Excavation, Slurry Wall, Continuous Trenching, Vibrating Beam

A Pilot Study at SPOLCHEMIE a.s. Michael Pupeza / Marco Grecolic Golder Associates Inc

April 2004

The SPOLCHEMIE Test

- Oldest chemical facility in Europe (Solvay-1864)
- Main producer of chlorinated solvents in former Czechoslovakia
- Also producing fertilizers (nitrates, etc.)
- Located on the alluvial terraces of the Elbe River
- Company in course of privatization
- Ongoing production of chlorinated solvents

The SPOLCHEMIE Test

PCE decrease in the injection well the day after pilot test

The SPOLCHEMIE Test

TCE decrease in the injection well the day after pilot test

Next Generation

Nano Iron Particles

Nano Fe

8 Fe atoms - 100% on surface

and Material Use Efficiency

A Cube of 64 Fe atoms 56 (87.5%) on surface

Nano Iron

50 nm ~4% on Surface

Permeable Reactive Barriers (PRBs)

Next Small Thing -Porous Nanoparticles

Large surface area Better hydraulics High mobility

Template-directed Synthesis (Hollow and Porous Iron)

Specific Surface Area

	Size	BET area
		(m²/g)
Solid sphere	0.4 mm	1.9
Porous sphere (synthesized)	0.4 mm	2100

COSTS

Iron Filings	Nano Iron	Porous Iron
\$0.5/kg	~\$50/kg	~\$100/kg
<10 m ² /kg	~25,000 m ² /kg	~200,000 m ² /kg
<20 m ² /dollar	~500 m²/dollar	~2,000 m ² /dollar

"There's Plenty of Room at the Bottom"

Richard Feynman

December 1959

Acknowledgments

FUNDING

U.S. EPA (STAR) NSF (CAREER) PITA

IDEAS

Dr. Roco (NSF) Dr. Karn (EPA) Dr. Masciangioli

<u>Research Team</u>

Dr. C.B. Wang Dr. H.L. Lien **Dr. Daniel Elliott** Dr. J. Cao Y.P. Sun Xiao-qin Li **Steve Spear** Yu Xue **Steph Kravitz Patrick Clasen Tim Marks** S.Y. (Jason) Chen