Remedy Optimization and Adaptive Management

Todd S. Bridges, Jongbum Kim, Igor Linkov

U.S. Army Engineer Research and Development Center Vicksburg, Mississippi

todd.s.bridges@erdc.usace.army.mil

Our Systems

- Navigation system:
 locks, dams, channels
- Reservoir system:
 - structures and operating procedures
- Flood risk reduction system:
 - Structural, nonstructural, ecosystem features
- The components of a sediment remedy and the encompassing watershed and its uses

We need help to resolve our decision problem

- The complexity of the system – Intuition is an unreliable guide
- Sediment clean-up projects are "wicked problems" (Rittel and Webber, 1973)
 - no definitive formulation of the problem
 - no right or wrong solutions, only better or worse solutions
 - a broad diversity of values and opinions that are germane to defining solutions
 - no ultimate test of a solution to the problem

How to Manage the Risks

- Navigation vs. Cleanup
 - Do the sediments have to go?
- In situ alternatives
 - Monitored Natural Recovery (MNR)
 - Capping
 - Treatment
- Ex situ alternatives
 - Dredging
 - Containment
 - Treatment

- Satisfy your objectives hierarchy

What are the objectives and decision criteria?

• 9 NCP criteria

- Threshold Criteria
 - Overall protection of HH and E
 - Compliance with ARARs
- Balancing Criteria
 - Long-term effectiveness/permanence
 - Reduction of TMV thru treatment
 - Short-term effectiveness
 - Implementability
 - Cost
- Modifying Criteria
 - State (or support agency) acceptance
 - Community acceptance

- Other/Imbedded Criteria
 - Consistency with current uses of the waterbody
 - Recreation, navigation
 - Consistency with objectives for the waterbody
 - Restoration
 - Compatibility with other ongoing remediation or restoration activities
 - Compatibility with other activities in the watershed
 - Etc.

Optimization

- History: Operations research arose during WW II to support logistics and training schedules. Later applications within industry
- OR aims to improve the quality of decisions about the management of limited resources
 - How to allocate limited resources efficiently
 - Applicable to capital investments, quality of life/environment, etc.

Simple Optimization Problem

- Inspect at least 250 points per day
- -Two grades of inspectors, A and B
- 7 grade A and 15 grade B inspectors are available
- Inspector A can check 25 points and B can check 18 points per day
- Wage of Grade A is \$80 and \$60 for Grade B per day
- What is optimal assignment of inspectors?

Transporting Dredged Material to a Landfill

- You want to determine how much sediment to go from each dredging site to each landfill in order to minimize the total cost
 - Cost can include not only \$, but also other nonmonetary impacts
- Can consider multiperiod planning

OR Success Stories

- FAA Ground-Delay Program
 - To reduce congestion and improve flow of air traffic into airports
 - Determine which aircraft/ how long to delay departures
 - Between 1998 and 2000, 90,000 hours of schedule delays were avoided at a cost savings of more than \$150 million
- NYC
 - To improve the deployment of street cleaner, garbage trucks, and inspectors
 - Productivity increased 17%
- GM
 - To identify the optimal way to ship 300 types of components to 30 assembly plants.
 - Cut cost by 26%, saving \$2.9 million a year

Multi-Objective Optimization

- Problem: Allocating remedial approaches across a spatially diverse site
 - Site divided into three areas
 - 3 remedial technologies available
 - What is the optimal allocation?
- Objectives:
 - Minimize Cost
 - Minimize incidental harm/risks
 - Minimize time to achieve acceptable risk reduction
- Constraint
 - Each area can use only one of the 3 options
 - Only remedial option 1 or 2 are applicable to Area 1
 - Only remedial option 2 or 3 are applicable to Area 3
 - The total suspended concentration from two adjacent areas must be less than 8

Characteristics

Characteristic	Area 1			Area 2			Area 3		
	Option 1	Option 2	Option 3	Option 1	Option 2	Option 3	Option 1	Option 2	Option 3
Cost per cubic yard	10	13	14	11	15	17	13	14	18
Risk reduction time (mos.)	60	45	30	45	30	20	50	30	15
Incidental harm/risk	13	10	14	9	7	12	14	8	17
Suspended conc.	4	2	3	7	3	2	6	2	2

Results

	Objective		When minimize				
Optimal Decis Performance	ion &	Cost	Risk reduction days	Environmental impact			
Optimal techniqueAreAre	Area 1	1	2	2			
	Area 2	3	3	2			
	Area 3	2	3	2			
	Cost	41	48	42			
Performance	Risk Reduction Time	110	80	105			
	Incidental Harm/Risk	33	39	25			

- Optimal solution depends on the relative importance of each objective
 - E.g., Two extreme points are (Wcost, Wrisk)=(1,0) or (Wcost, Wrisk)=(0,1)
 - With multiple objectives, can use Z= Wi*f(i)+ Wj*fj(j)+...+ Wt*f(t)
 where f(i) is a function of various objectives

Multi-Criteria Decision Analysis

- An approach for structuring and analyzing decision problems
- Emphasis given to:
 - Defining the problem
 - Establishing explicit objectives
 - Defining metrics for evaluating alternative solutions/plans
 - Incorporating human values and risk attitudes
 - Through weighting and utility functions
 - Ranking plans based on quantitative scores derived from metrics
 - Using multi-attribute utility theory

Data Matrix

Metric (Weight)	Units	Cars					
		Option 1	Option 2	Option 3	Option 4	Option 5	
Cost (25)	Dollars	27,000	45,000	30,000	35,000	12,000	
Resale Value After Three Years (5)	% of Original Value	44	56	57	49	33	
Repair/Maintenance Cost Per Year (5)	Dollars	100	500	1,000	250	500	
Fuel Efficiency (15)	MPG	30	25	45	27	32	
Passenger Compartment Space (15)	ft ³	150	170	165	160	145	
Style and Comfort (5)	Qualitative	Finest	Finest	Average	Average	Poor	
Safety Rating (30)	NHTSA Safety Rating	2	3	3	5	2	

Ranking and Contributions by Metric

Ranking Sensitivity to Weight AllocationCost: 25 to 30Safety: 30 to 25

17

LaCPR Objectives and Metrics

Planning Objectives

- Reduce risk to public safety from catastrophic storm inundation
- Reduce damages from catastrophic storm inundation
- Promote a sustainable ecosystem
- Restore and sustain diverse fish and wildlife habitats, and
- Sustain the unique heritage of coastal Louisiana by protecting historic sites and supporting traditional cultures

Risk Metrics

- National Economic Development
 - Residual damages
 - Life-cycle costs (Implementation, O&M)
 - Construction time
- Regional Economic Development
 - Regional Economic Development (jobs, income, regional output)
- Environmental Quality
 - Spatial integrity
 - Wetlands restored and/or protected
 - Direct impacts
 - Indirect impacts
 - Historical properties protected
 - Archeological properties protected
- Other Social Effects
 - Residual population impacted
 - Historical districts protected

LaCPR Weightings Results

Weight allocation for gov't agencies (a) and all stakeholders (b)

Example Plan Rankings

A Sediment Example

Criteria Levels for Each NY DM Alternative

	Cost	Public Acceptability	Ecolog	ical Risk	Human Health Risk		
DM Alternatives	(\$/CY)	Impacted Area/Capacity (acres / MCY)	Ecological Exposure Pathways	Magnitude of Ecological HQ	Human Exposure Pathways	Magnitude of Maximum Cancer Risk	Estimated Fish COC / Risk Level
CAD	5-29	4400	23	680	18	2.8 E -5	28
Island CDF	25-35	980	38	2100	24	9.2 E -5	92
Near-shore CDF	15-25	6500	38	900	24	3.8 E -5	38
Upland CDF	20-25	6500	38	900	24	3.8 E -5	38
Landfill	29-70	0	0	0	21	3.2 E –4	0
No Action	0-5	0	41	5200	12	2.2 E –4	220
Cement-Lock	54-75	0	14	0.00002	25	2.0 E -5	0
Manufactured Soil	54-60	750	18	8.7	22	1.0 E –3	0

Blue Text: Most Acceptable Value Red Text: Least Acceptable Value

Criteria Contributions to Decision Score

EPA weighting

Adaptive Planning and Engineering

- Uncertainty is inherent to planning, design, construction, and O&M
- Adaptive management requires a framework for collecting and using information that results from:
 - Implementing a plan
 - Monitoring the performance of the plan
 - Learning
- The OR and MCDA provide suitable approaches

Risk Reduction Trajectories

Time

The Path Forward

- 3 principles relevant to transforming practice
 - Sediment remedial projects should be addressed as decision problems
 - Deliberation is essential to the successful resolution of risk-decision problems
 - Transforming practice requires commitment to change, experimentation, and learning