Managing a Large Dilute Plume Impacted by Matrix Diffusion: MEW Case Study

Presented at Federal Remediation Technologies Roundtable Washington, D.C. 20 June 2012

Geosyntec: John Gallinatti, Deepa Gandhi, Eric Suchomel, Nancy Bice GSI: Chuck Newell, Poonam Kulkarni

Outline

SITE CONDITIONS – A LARGE DILUTE PLUME

- Performance of Groundwater Remedy (25 years of P&T)
- Conceptual Model Matrix Diffusion

SITE MANAGEMENT

- EPA-Authored Focused Groundwater Feasibility Study (GWFS)
- Site Challenges to GWFS
 - Large Scale
 - Matrix Diffusion
- Clean-Up Time Evaluation

CONCLUSIONS

Site Location

Middlefield-Ellis-Whisman (MEW) Area Mountain View, CA

Simplified Cross Section

MEW Summary

- 1981: Investigations and P&T began
- 1989 ROD: SVE, excavation, slurry walls, P&T
- Site Characteristics:

.5 miles

COCs: Chlorinated solvents (TCE) Affected Depth: 110 ft bgs (A and B1 zones) Plume length: 1.5 miles Extraction Wells: 100+ Combined Flow Rate: 500 gpm Annual Mass Removal: 2,500 lbs VOCs Cumulative Mass Removal: 97,000 lbs VOCs

Vapor Intrusion ROD Amendment

- ROD Amendment was adopted by EPA in August 2010
 - VI remedy was selected
 - New Remedial Action Objective was included:
 - Accelerate VI source reduction in shallow groundwater
 - Goal of source reduction to minimize or eliminate need for VI remedy

Pump & Treat Remedy A Zone

Pump & Treat Remedy B1 Zone

A-Zone Remedy Progress

90% reduction in TCE dissolved plume mass

B1-Zone Remedy Progress

90% reduction in TCE dissolved plume mass

Conceptual Model Mass in Storage

- During the 2002-2006 period, the combined <u>P&T systems</u> removed mass (16,000 lbs of TCE) more than 5 times greater than the rate of reduction in the dissolved TCE plume (2,800 lbs of TCE)
- Therefore, approximately 80% of TCE being removed by the P&T system (after more than a decade of pumping) is coming out of storage
- And, there must be significant mass stored (i.e. not in direct equilibrium with the mobile groundwater sampled in monitoring wells).
 - DNAPL? -- possible localized residual, source areas only
 - Matrix Diffusion? widespread, historical dissolved plume

Matrix Diffusion

After NRC 2005

Evidence of Matrix Diffusion

- Heterogeneity at every scale
- Site-specific retardation for TCE estimated in 1988: 6.5 to 12
- No plume detachment downgradient from controlled sources
- Matrix diffusion better explains observed extraction well data (Newell, et al.) ... see following slides

Analyzed Extraction Wells With No Source Contact in Capture Zone

Applied "Square Root" Matrix Diffusion Model to Recovery Well REG-8A After 10 Years, 30 Pore Volumes of Pumping

"Square Root" Matrix Diffusion Model

$$M_{D} = \phi_{LowPerm} C_{SAT} L_{p} \left[\sqrt{\frac{R_{LowPerm} D_{effective}}{\pi t}} - \sqrt{\frac{R_{LowPerm} D_{effective}}{\pi (t - t')}} \right]$$

- M_D: **Mass Discharge** from Low Permeability Unit (grams per day) assuming no concentration in transmissive zone (no resistance to back diffusion)
- Low Permeability Unit Porosity, $\phi_{LowPerm}$ (, $\phi_{LowPerm} = 0.3$)
- Effective Diffusion Coefficient of Low Perm Unit, D_e
- Retardation Factor of Low Perm Unit, R_{LowPerm} (R=5.0)
- Time Loading Started, years before simulation time, t
- Time Loading was Removed, years before simulation time t'

•Parker et al. (1994) adapted by T. Sale (AFCEE, 2007).

Outline

SITE CONDITIONS – A LARGE DILUTE PLUME

- Performance of Groundwater Remedy (25 years of P&T)
- Conceptual Model Matrix Diffusion

SITE MANAGEMENT

- EPA-Authored Focused Groundwater Feasibility Study (GWFS)
- Site Challenges to GWFS
 - Large Scale
 - Matrix Diffusion
- Clean-Up Time Evaluation

CONCLUSIONS

EPA-Authored Focused Groundwater FS

- Motivated by:
 - Technology advances
 - VI ROD Amendment
- Considers:
 - "Optimized" P&T
 - In-Situ treatment of shallow high concentrations
 - Monitored Natural Attenuation (MNA)
 - Permeable Reactive Barriers
- EPA led effort with technical input from RPs
- Primary effort January-June 2011
- Completion Expected in 2012

Challenge of Large Scale Plume

- Cost of in-situ treatment of remaining areas with
 1,000 µg/L would be more than \$1 billion
- With no evidence that the plume would be reduced to 5 µg/L in reasonable time

Matrix Diffusion in GWFS

- Needed to consider matrix diffusion impacts on:
 - conceptual site model,
 - alternative remedy effectiveness,
 - cleanup times, and therefore,
 - cost
- To allow for the development and comparison of realistic alternatives with realistic timeframes and costs
- Dispel the misconception that: " ... once we get the sources cleaned up, the rest of the plume will clean-up quickly."

GWFS Alternatives

Alternatives Evaluated:

- 1. Existing P&T
- 2. Optimized P&T
- 3. Optimized P&T + MNA
- 4. Optimized P&T + MNA + source treatment
- 5. Optimized P&T + MNA + PRBs

Cleanup targets considered:

- 5 μg/L
- 200 μg/L
- 90% concentration reduction

Clean-Up Time Evaluation

- Used a simple "box model" to evaluate clean-up times
- Reasons for this approach:
 - Tight schedule: Clean-up time estimates generated within 3 months of start of FS process
 - Complex site: Calibration of a solute transport model would need to account for very complex history, including many sources, multiple depth intervals, 100 extraction wells
 - Decision making: Simple analysis tool allows discussion of clean-up time issues to remain accessible to stakeholders and not become hidden within the realm of expert modelers

Box Model Incorporating Matrix Diffusion

- Two component box model
 - Transmissive zone
 - Low permeability zone
- Mass balance on VOCs in transmissive zone
 - Partitioning between groundwater and soil
 - Removal via advection
 - Removal via degradation
 - Matrix diffusion from low permeability zone as secondary source
- Models change in concentration with time for both transmissive and low permeability zones

Application of Box Model to Cleanup Time Evaluation

- Concentration over time in sample portions of the plume calculated using the spreadsheet-based "box model"
- Modeling results representative of entire plume footprint
- A few selected results compared with Remchlor (source zone)

Cleanup Time Evaluation Results

- Alt 1: Current Remedy
- Alt 3: Optimized P&T + MNA
- ••• Alt 5: Optimized P&T + MNA + PRBs
- Alt 2: Optimized P&T

• • • Alt 4: Optimized P&T + MNA + source

Cleanup Time Evaluation Results

- Alt 1: Current Remedy
- Alt 3: Optimized P&T + MNA
- ••• Alt 5: Optimized P&T + MNA + PRBs
- Alt 2: Optimized P&T

• • • Alt 4: Optimized P&T + MNA + source

Cleanup Time Evaluation Results

Plume footprint – 5ppb target

Plume footprint – 200 ppb target

Outline

SITE CONDITIONS – A LARGE DILUTE PLUME

- Performance of Groundwater Remedy (25 years of P&T)
- Conceptual Model Matrix Diffusion

SITE MANAGEMENT

- EPA-Authored Focused Groundwater Feasibility Study (GWFS)
- Site Challenges to GWFS
 - Large Scale
 - Matrix Diffusion
- Clean-Up Time Evaluation

CONCLUSIONS

Conclusions

- 25 years of P&T has been effective in reducing concentrations in the dissolved plume - 90% reduction in dissolved plume mass, however, plume footprint is not shrinking
- 2,500 lbs/yr of VOC mass removal by P&T systems, but estimated that only 20% is from reducing VOC concentrations in mobile groundwater, remaining 80% is coming out of storage
- Matrix diffusion is source of VOCs in storage, based on site geology and observed trends outside of contained source areas

Conclusions

- Feasibility study needed to account for challenge of large plume scale and matrix diffusion
- Simple box model developed for cleanup time evaluation
- Centuries to reach 5 µg/L under all alternatives
- Decades to reach 200 µg/L may allow for MNA as remedy

Acknowledgements

- Dave Major, Geosyntec
- Jim McDade, and Shahla Farhat, GSI