

Proudly Operated by Battelle Since 1965

Large Dilute Plumes: Use of Molecular Tools for reaching acceptable end states

HOPE LEE

Mike Truex, Dawn Wellman Pacific Northwest National Laboratory

End States – final remedial goals that are permitted by regulations and are protective of human health and the environment

Risk-based – decision process based on analysis of the potential of a contaminant to cause immediate and long-term harm to a receptor resulting from exposure and the likelihood of occurrence

Scientifically based/ technically defensible – systematic, objective understanding of a problem based on, objective approaches and independently reproducible results that provide a sound understanding and justification for decision making.

What is an acceptable End State?

Tradeoffs must be carefully considered among the competing influences of cost, scientific defensibility, and the amount of acceptable uncertainty in meeting remediation decision objectives

Increased Scientific and Technical Defensibility

ility						
Regulatory Acceptability	High risk, complexity, and cost with little to no regulatory acceptance	Scientific and technically defensible with minimal risk but costly and limited regulatory acceptance	ed Cost			
ecreased Regula	High risk and complexity but less costly and regulatory acceptable	Scientifically and technically defensible with minimal risk or cost and regulatory acceptable	Increased			

June 20, 2012

U.S. DOE Environmental Management Sites

Proudly Operated by Battelle Since 1965

- Remediating ~ 1,800 million m³ of contaminated groundwater
- 75 million m³ of contaminated soil

What are EMs primary contaminants?

Proudly Operated by Battelle Since 1965

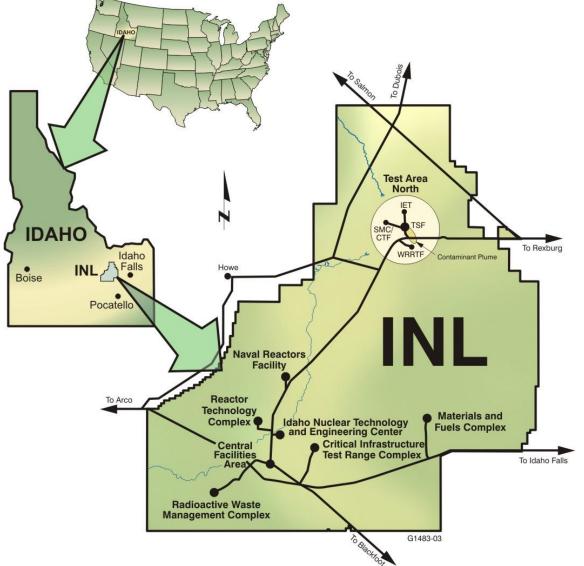
Site	Metals & Rads	Organics	Fuels	Other
Hanford	Strontium, Chromium, Uranium, Technetium, Iodine	Carbon Tetrachloride, TCE, Cis-1,2-DCE	Diesel	Tritium, Sulfate, Nitrate
Savannah River	Strontium, Uranium, Lead, Iodine, Technetium, Cadmium, Mercury	PCE, TCE, DCE, VC, Carbon Tetrachloride		Tritium
Oak Ridge	Mercury, Technetium, Cadmium, Chromium, Uranium, Strontium, Cobalt	DCE, TCE, VC, PCE		Nitrate, Tritium
Paducah	Technetium	TCE		
Portsmouth	Technetium	TCE		
West Valley	Strontium, Cesium			Tritium
Moab	Uranium			Ammonia
Los Alamos	Chromium			Nitrate, Tritium, Explosives, Perchlorate
Idaho	Chromium, Strontium, Technetium, Iodine, Cesium	Carbon tetrachloride, TCE, PCE, DCE		Nitrate
Sandia	Chromium	Chloroform, Carbon Tetrachloride, TCE	Diesel	Explosives, Nitrate, Perchlorate

EM goals for subsurface ...

Proudly Operated by Baffelle Since 1965

- Reduce the life-cycle costs and accelerate the cleanup of the Cold War environmental legacy
- Reduce the EM legacy footprint by 40 percent by the end of 2011, leading to approximately 90 percent reduction by 2015

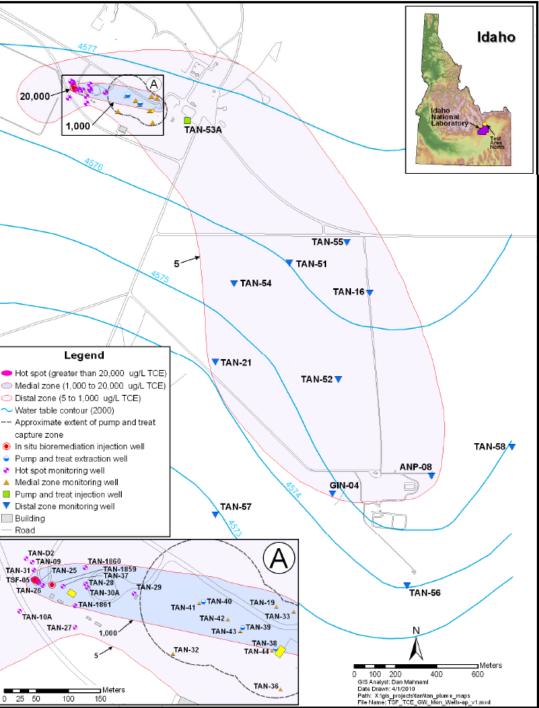
DoD ALSO has set ambitious goals... Air Force: 90% of BRAC sites "achieve accelerated site completion" by 2015. DoD: 95% of IRP and MMRP sites achieve Remedy Complete by 2021.


- What has been done at other sites
- Interagency collaboration
- Lessons Learned
- Technology/expertise transfer
- Regulatory and stakeholder engagement
- Risk-informed understanding and defensibility
- Robust long-term management of residual contamination

Test Area North

Proudly Operated by Baffelle Since 1965

- Direct injection of industrial wastewater into the aquifer from 1953-1972.
- Primary contaminant of concern is TCE.
- TCE plume is nearly 2 miles long.
- Contaminated aquifer is 200-400 ft deep.
- Aquifer is comprised of fractured basalt.


History of Decisions

1995 Record of Decision

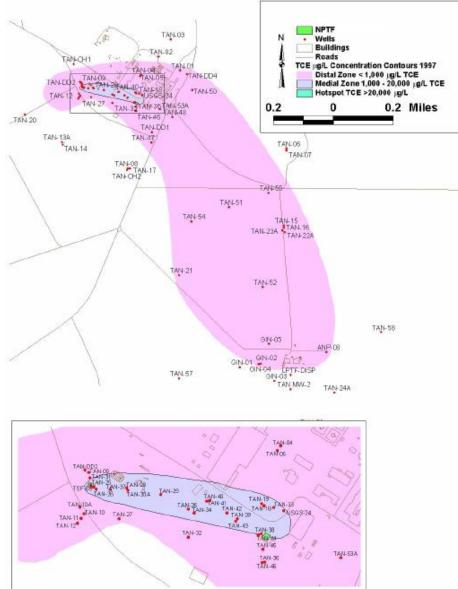
- Pump and treat default remedy
- Alternative technology evaluations
- 100 year restoration timeframe (2095) established
- 1997 Explanation of Significant Differences
 - Defined three plume zones
 - Performed alternative technology evaluations

2001 ROD Amendment

 Identified alternative remedies for two of the three plume zones

June 20, 2012

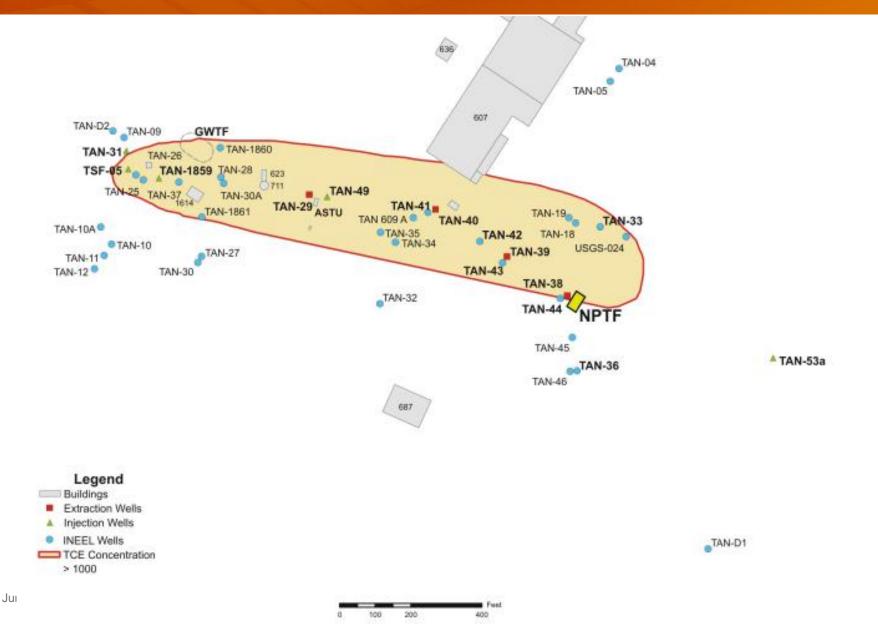
Three component strategy


Proudly Operated by Battelle Since 1965

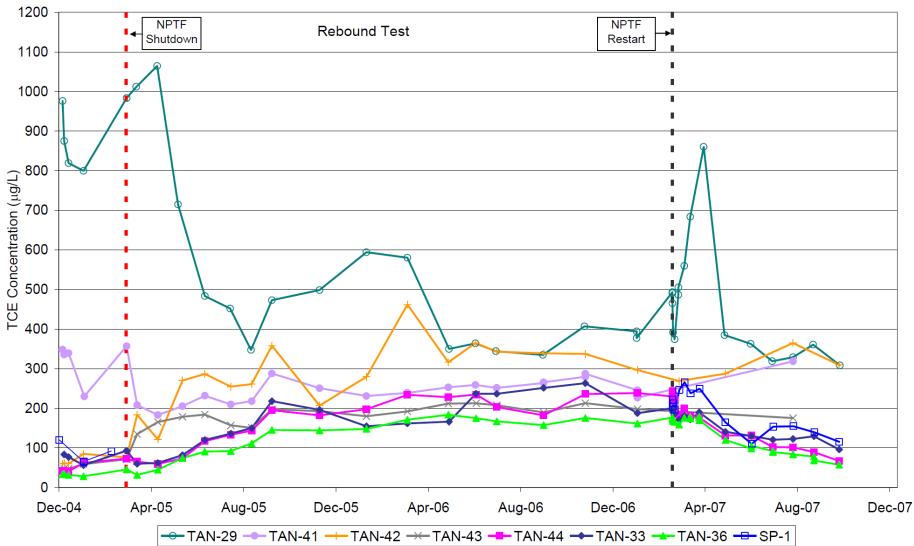
- Source Area > 10,000 µg/L: In situ bioremediation
- Medial Zone > 1000 µg/L: Pump and Treat
- Distal Zone < 1000 µg/L: Monitored Natural Attenuation

Source Area:

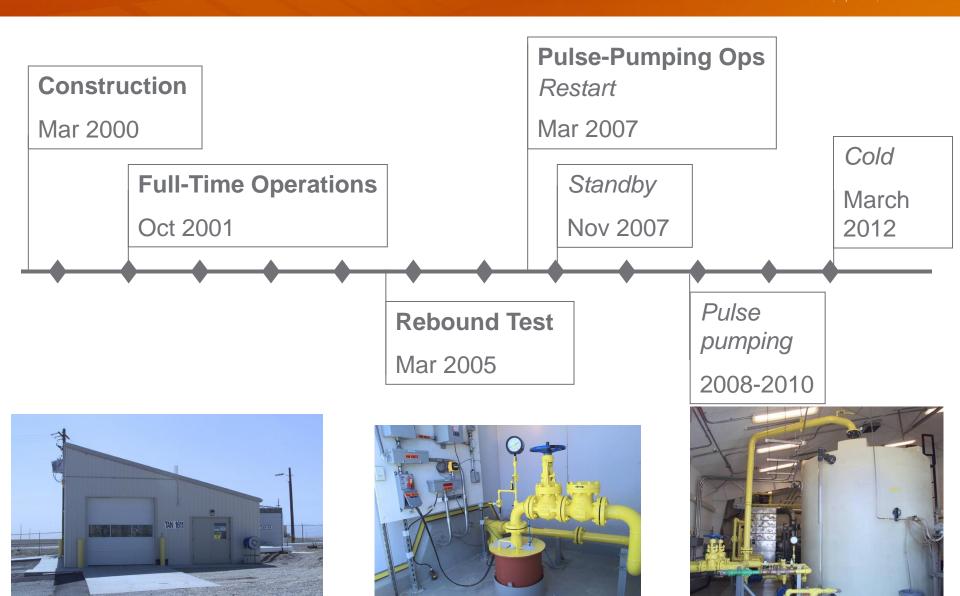
- Removal of Sludge
- Injections of Lactate
- Injections of Whey Powder


Performance based optimizations of ARD and injection strategies

Medial Zone

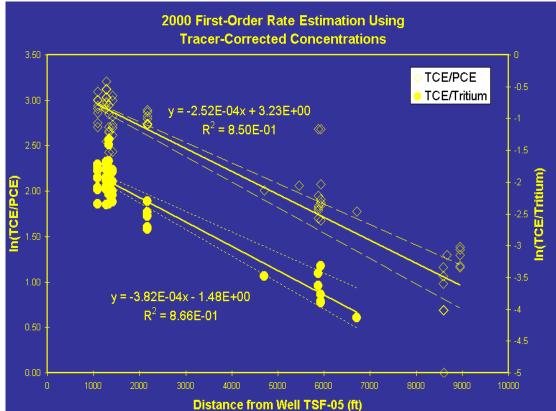

Proudly Operated by **Battelle** Since 1965

NPTF rebound data


Proudly Operated by Battelle Since 1965

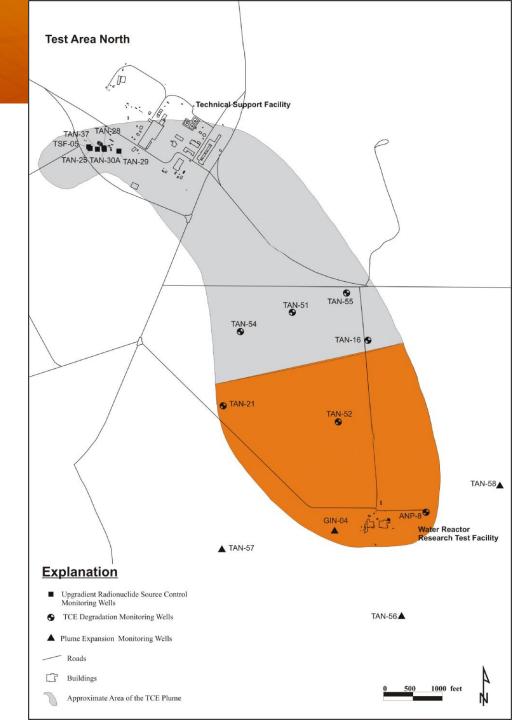
TCE Concentrations for the Medial Zone Wells

NPTF Optimization Summary



Natural Attenuation : Distal Plume

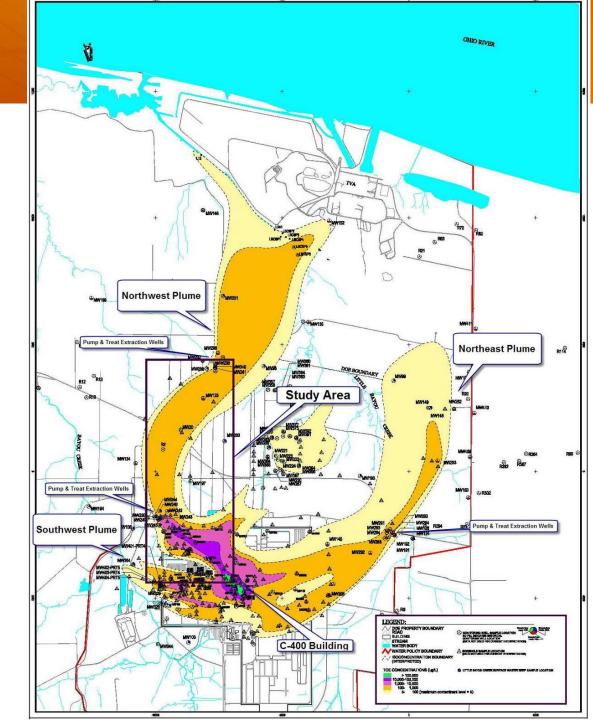
Pacific Northwest NATIONAL LABORATORY Proudly Oberated by Battelle Since 1965


- TCE concentrations decrease with distance from the source area in relation to PCE and tritium with a half-life of 9-21 years.
- A numerical model generates a plume that more closely matches field data when the model incorporates a TCE degradation term.
- Laboratory studies have shown that organisms capable of aerobic cometabolic oxidation of TCE are native to TAN.

Plume Stability

- Plume was stable (although changing) 1997-2009
- 2010 concentrations in MW at leading edge of plume showed decreasing trend
- 2011 plume is shrinking (shown by MW data < MCLs at leading edge of plume)

Holistic Systems Based Approach

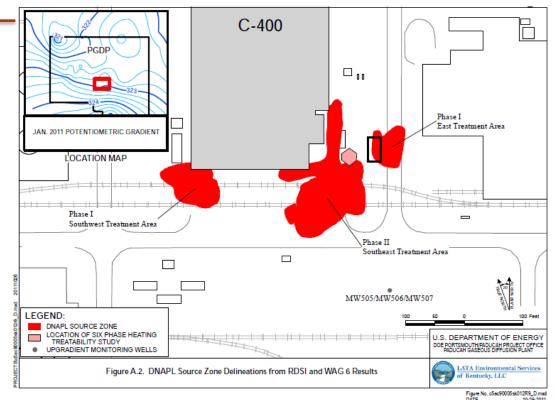

Interagency Project team consisted of EPA, DOE, IDEQ, and public

Scientifically defensible strategy - reevaluated when new technologies or approaches were applicable and available (mass flux, revise SCM, molecular tools)

Optimized strategies throughout plume (\$\$ and performance) e.g. PNT rebound study and shut down (estimated cost savings of 3 component strategy 8 million over PNT for lifetime of plume)

Monitoring program modified (reduced) on year to year basis based on defensible data (concentration, risk)

Paducah Gaseous Diffusion Plant


June 20, 2012

Source Area Remedy & Results

ROD for an interim action was signed in August 2005: *C-400 Cleaning Building at the Paducah Gaseous Diffusion Plant,* elected **electrical resistance heating** (ERH) to address the source area comprised of VOCs

- March-December 2010
- Upper aquifer < 70 ft was heated to target temperatures
- Groundwater concentrations in the SW decreased from average 38,000 µg/L to 315 µg/L (99%); East 123,000 to 29,000 µg/L (76%)
- Soil TCE concentrations were reduced by an average of 99% SW and 95% in East

2012 -

- Lessons Learned (heating, removal, etc.)
- Remedial alternatives ISCO, ERH steam
- MW, data and revised site Conceptual Model

Remedial Action Summary

10,000

1.000

5

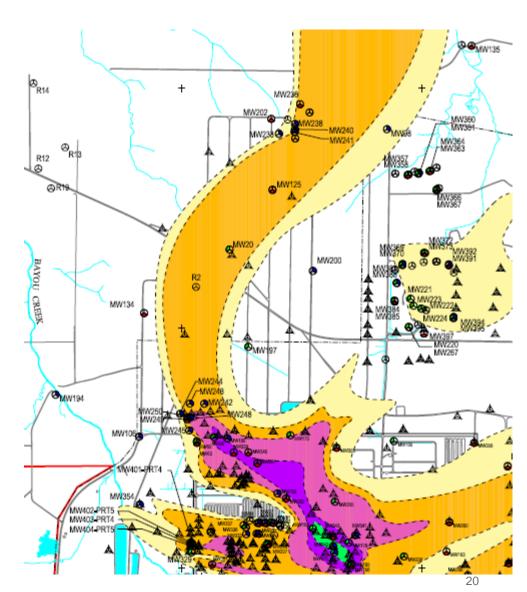
NW Plume Interim Northeast Plume Interim Actions intended to intercept Action pump and treat started in 1995 **Interim Action pump** dissolved-phase mass greater than and treat started in 1,000 µg/L 1997 2000 Plume Mass Approx. Mass = 85,000 lbs 2005 Plume Mass Approx. Mass = 87,000 lbs 2010 Plume Mass Approx. Mass = 27,000 lbs 1994 2000 **Optimization of** Dissolved-phase mass removed via Northwest pump and treat = 35,000 lbs Plume system -August 2010 Source-based mass removed via interim actions/treatability studies = 33,000 lbs TCE Plume Boundary µg/L PLANT NORTH TRUE NORTH 100,000 100

2005

2010

June 20, 2012

Paducah: MNA


Lines of Evidence:

First-order degradation rate calculations indicate that TCE is being attenuated along NWP flowpaths at a rate faster than its co-contaminant 99Tc.

Molecular analyses provide evidence that microbes capable of cometabolism of TCE are present and actively in the aquifer.

Geochemical conditions suggest that organic carbon is available in the aquifer in sufficient concentrations to support the identified microbial populations.

SCIA well-pair data indicate aerobic cometabolic degradation of TCE is occurring in the RGA within the study area.

End States at Paducah

Proudly Operated by **Battelle** Since 1965

Interagency Project Teams Optimized Strategies:

Revision of SCM Installation of suite of MWs to delineate sources Application of new technologies, new tools Lessons Learned Target temperatures were not attained in middle and lower RGA

The density of vapor extraction points should be increased

The vapor treatment technology should be changed

Remedial Action Review

Thermal, PNT performance and optimization (new wells)

Opportunities

Acknowledgments

Proudly Operated by Battelle Since 1965

SOMERS

- Amoret L. Bunn, Pacific Northwest National Laboratory
- Dawn M. Wellman, Pacific Northwest National Laboratory
- Rula A. Deeb, ARCADIS/Malcolm Pirnie
- Elisabeth L. Hawley, ARCADIS/Malcolm Pirnie
- Michael J. Truex, Pacific Northwest National Laboratory
- Mark J. Peterson, Oak Ridge National Laboratory
- Mark D. Freshley, Pacific Northwest National Laboratory
- Eric M. Pierce, Oak Ridge National Laboratory
- John McCord, Stoller Associates
- Michael H. Young, University of Texas at Austin
- Tyler J. Gilmore, Pacific Northwest National Laboratory
- Rick Miller, University of Kansas, Kansas Geological Survey
- Ann L. Miracle, Pacific Northwest National Laboratory
- Dawn Kaback, AMEC Geomatrix
- Carol Eddy-Dilek, Savannah River National Laboratory
- Joe Rossabi, Redox Technologies
- M. Hope Lee, Pacific Northwest National Laboratory
- Richard Bush, DOE Office of Legacy Management
- Paul Beam, DOE Office of Environmental Management
- Skip Chamberlain, DOE Office of Environmental Management
- Justin Marble, DOE Office of Environmental Management
- Latrincy Whitehurst, DOE Office of Environmental Management
- Kurt Gerdes, DOE Office of Environmental Management
- Yvette T. Collazo, DOE Office of Environmental Management

TAN

NWI: Joe Rothermel Dana Swift Kent Sorenson Tamzen Macbeth Kevin Harris Michael Witt Lance Peterson Idaho Department of Environmental Quality, Mark Jeffers, Gerry Winter Environmental Protection Agency, Matt Wilkening

Paducah

F&T Project Team: DOE-PPPO Dr. Rich Bonczek Paducah Remediation Services Bryan Clayton, Ken Davis Portage Environmental Bruce Phillips Kentucky Division of Waste Management Dr. Ed Winner, Todd Mullins, Brian Begley, Dr. Scott Little **USEPA Region IV David Williams USEPA Ada Environmental** Laboratory Dr. John Wilson KRCEE Dr. John Volpe, Steve Hampson **DOE-EM Beth Moore** Savannah River Laboratory Dr. Brian Looney 22 University of Oklahoma Dr. Paul Philp