

Federal Remediation Technologies Roundtable General Meeting Reston, VA June 25, 2015

25 Years of Technology Innovation: 1990-2015

Daniel Powell, Chief

Technology Integration and Information Branch

Office of Superfund Remediation and Technology Innovation

The Starting Point

- Innovative Treatment Technologies: Technologies whose routine use is inhibited by lack of data on performance and cost.
- I990 Mandates/Drivers
 - Preference for treatment (Superfund Amendments and Reauthorization Act or SARA)
 - Move away from "dig and haul," capping
 - Permanence
 - Land Disposal Restrictions In Situ
 - Very limited menu of treatment options
 - Soil: Incineration, maybe solidification
 - Groundwater: Pump and treat

Early Cleanups in Superfund

- Superfund Law Enacted in 1980 in response to a need to protect citizens from the dangers posed by abandoned or uncontrolled hazardous waste sites
- Superfund was a powerful law that resulted in immediate action at many priority sites
- The challenge was new, and the need for action prevailed
- Technical solutions were few, and we applied what we knew

Technology Innovation Directions: c 1990

- Treatment, soil (surface, vadose zone)
- Groundwater treatment, very limited options
- Characterization, not so much
- Bioremediation
 - Exxon-Valdez
 - Natural attenuation, hmmm....
- Ex-situ treatments
 - Soil washing
 - Solvent extraction
 - Thermal desorption
 - Bioreactors

The Starting Point

• Superfund Remedies: Early Years (1982-1985)

	Containment	Treatment
Soil Remedies	75%	25%
	Pump & Treat	In-Situ Treatment
Groundwater remedies	90%	3%

RD&D: Many Options

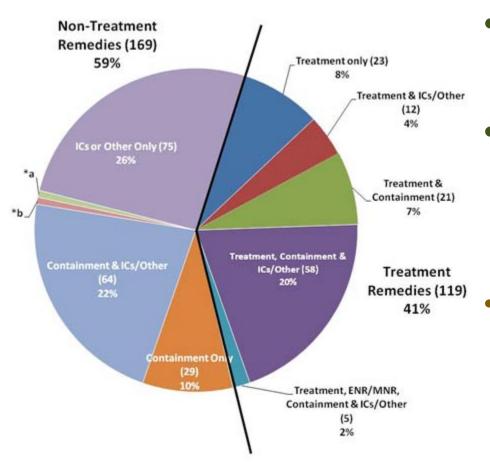
- U.S. EPA: Superfund Innovative Technology Evaluation (SITE) Program
- Department of Energy, EM-50
- Department of Defense
- State programs
- Non-profit, private sector
 - NETAC
 - PERF
- Cost and performance information at a premium

FRTR Direction: 1990's

- Sharing information, information resources
- Better information for decision makers
- Demonstration projects
- Information exchange
- Public-private partnerships
 - Remediation Technology Development Forum
 - Clean Sites
 - Technology testing centers
- Leveraging investment
- Biggest focus on remediation

Evolution of Technology: 1995-2005

- Treatment trains
- Platforms vs. individual technologies
- Greater focus on groundwater, broader use of alternative technologies
- RD&D money, a shrinking pie
- Emerging concepts
 - Triad
 - Optimization
 - Reuse, land revitalization
- Building library of cost and performance information, case studies



Evolution of Technology: 2005-Present

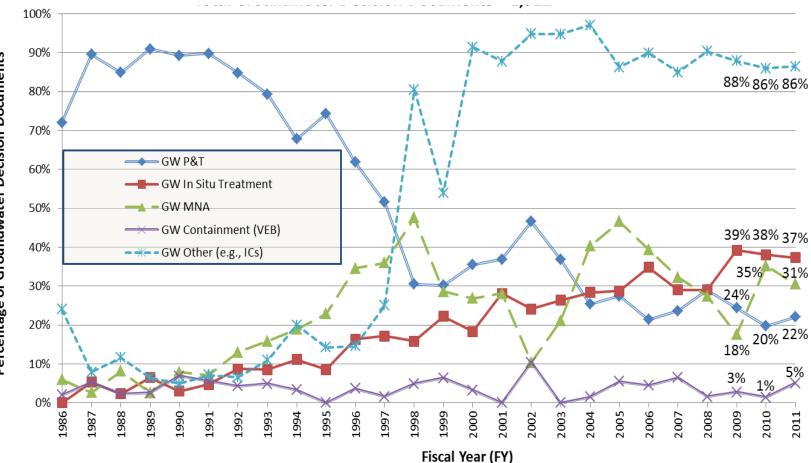
- Big growth in Brownfields, land revitalization directions
- Maturation of Triad concepts: approach vs. technologies
- Maturation of optimization
 - Beyond RSE, LTMO
 - Beyond pump and treat
- Growth and maturation in source treatment
 - Thermal approaches
 - Oxidation

Superfund Remedies for Sources¹ (2009–2011)

- Remedies often selected and applied in combination
- For example, over 30% of treatment remedies were selected with other types of remedies
- We now have a rich mix of remedies available and mature consulting and engineering sector to implement them

In Situ Source Treatment Technologies at Superfund Sites

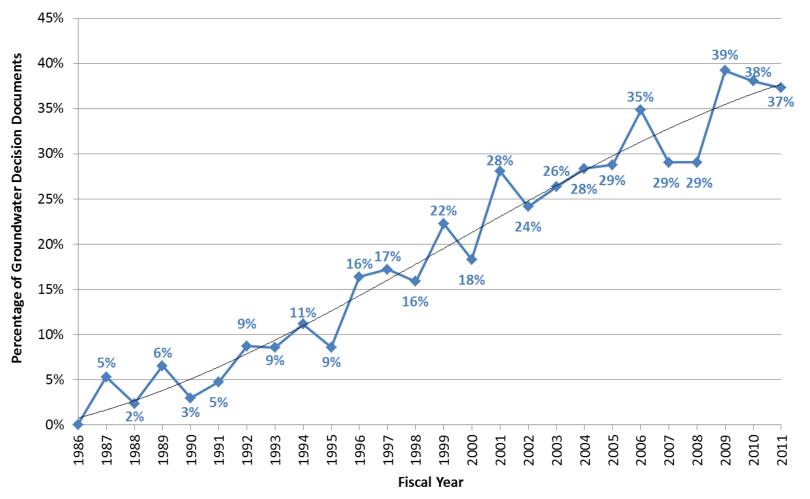
Technology	Total Percent 2009-2011	
In Situ		
Soil Vapor Extraction	25	14%
Chemical Treatment	17	10%
Solidification/Stabilization	11	6%
Multi-Phase Extraction	9	5%
In Situ Thermal Treatment	7	4%
Bioremediation	5	3%
Subaqueous Reactive Cap	2	1%
Flushing	1	1%
Fracturing	1	1%
Phytoremediation	1	1%
Total In Situ	79	45%


- About 45% of treatment remedies for source control are currently in situ (in place)
- We are seeing fewer developments in new technologies, and more innovation in design, construction and operation of commercial technologies
- More aggressive remedies used to tackle source areas (such as in situ thermal treatment, chemical oxidation)
- Often coupled with groundwater remedies, treatment and non-treatment

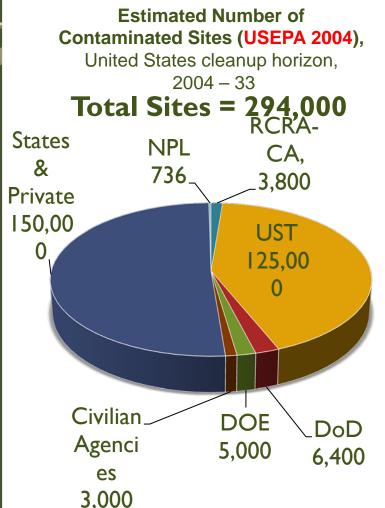
Trends in Superfund Groundwater Remedies Selection (1986–11)

Total Groundwater Decision Documents = 1,912

Groundwater Remedy Types Recently Selected in Superfund


Remedy Type and	Total (EVOO	Percent
Technologies	(FY09– 11)	(FY09– 11)
Groundwater Pump and Treat	44	12%
In Situ Treatment of Groundwater	78	21%
Bioremediation	49	13%
Chemical Treatment	27	7%
Air Sparging	14	4%
Permeable Reactive Barrier	8	2%
In-Well Air Stripping	2	1%
Multi-Phase Extraction	2	1%
MNA of Groundwater	56	15%
Groundwater Containment (VEB)	6	2%
Engineered (Constructed) Wetland	3	1%
Other Groundwater	177	49%
Institutional Controls	173	48%
Alternative Water Supply	13	4%
Engineering Controls	2	1%

- Groundwater pump and treat still common, but we see more in situ treatment remedies
- Monitored natural attenuation is used either alone or in combination
- Concept of "adaptive management" gaining ground: Actively monitoring operating systems to determine optimal transition time and place between remedy components



In Situ Groundwater Treatment: Increasing Use in Superfund

U.S. Contaminated Site Programs: We Still a Lot of Remediation Work to Do

- We have made great progress cleaning up contaminated sites but...
 - National Academies of Sciences estimates 126,000 sites across U.S. still have contaminated groundwater, and their closure expected to cost at least \$110 billion to \$127 billion
 - We continue to invest over \$8 billion a year in remediation (USEPA, EBJ)
 - We have opportunity to take lessons learned over the past decades, and apply innovations and best management practices to future sites

Sources: www.clu-in.org/market; http://www.nationalacademies.org/ http://www.ebiusa.com/

Evolution of Technology: Moving Forward

- High resolution site characterization approaches
 - Many data points
 - An evolving conceptual site model
 - Data management tools and visualization of data
- Green and Sustainable Remediation
 - Approaches
 - Components
 - Energy use, GHGs and climate change adaptation
- Addressing complexity of sites/"big" sites
- Bioavailability

Moving Forward

- Focusing and pursuing site cleanup needs
 - Specifics are important
 - Beyond contaminant/media
 - Clearly stating need
 - Providing performance metrics in statement of need
 - Characterization tools focus on decisions, decisonmakers
 - Need a path forward
 - If we decide we need it, what are we going to do about it?
 - Funding options
 - Map
 - Leverage
 - Path to site use

Example of Needs Statement Monitoring Technologies c. 2007

- Air Emissions Monitoring -Continuous emissions monitors for thermal hazardous waste treatment systems; remote sensing for fence-line monitoring of fugitive emissions
- Characterizing and Monitoring Mining Sites- Monitoring technologies for mining waste sites
- **Contaminated Sediment Characterization-** Sampling and analytical technologies for potentially contaminated sediment
- **Field Methods** Screening for dioxin contamination; detection of perchlorate in waterpesticides and their degradation products; MTBE in groundwater
- Indoor Air Quality- Monitoring vapor intrusion into buildings
- In-Situ Monitoring Systems- Sensor technologies for long term monitoring of groundwater, treatment system performance; leak detection for small municipal landfills
- Laboratory Analytical Methods- New monitoring methods for total cyanides and cyanide speciation
- Monitoring Effectiveness of In-Situ Remedies- Monitors of natural attenuation and other in-situ systems

Underground Storage Tanks- Leak detection methods for underground storage tanks
and pipes

