Nanomaterials for Environmental Remediation

Glen E. Fryxell Pacific Northwest National Laboratory Richland, WA

glen.fryxell@pnl.gov

Advantages of nanomaterials

Nanomaterials provide:

- High surface area (capacity)
- Well defined structure
- High reactivity
- Easy dispersability
- Readily tailored for application in different environments
- Chemistry/materials developed for remediation processes are readily tailored to sensing/detection

Pacific Northwest National Laboratory U.S. Department of Energy

Battelle

SAMMS: Self-Assembled Monolayers on Mesoporous Supports

A. Self-assembled monolayers

B. Ordered mesoporous oxide

First reported in: *Science* **1997**, *276*, 923-926.

POC: Glen Fryxell

SAMMS in a Nutshell

- Extremely high surface area = high capacity
- Rigid, open pore structure provides for fast sorption kinetics
- Chemical specificity dictated by monolayer interface
- Easily modified for new target species
- Sequestration can be driven either by metal/ligand affinity or by adduct insolubility
- Good chemical and thermal stability
- Easily regenerated/recycled

"Designing Surface Chemistry in Mesoporous Silica" in "Adsorption on Silica Surfaces"; pp. 665-687, Marcel-Dekker, **2000**.

POC: Glen Fryxell

Tailoring SAMMS interfacial chemistry to the periodic table

Functional Nanomaterials for analytical preconcentration

"Self-Assembled Monolayers on Mesoporous Supports (SAMMS): Environmental Clean-up and Enhanced Sensing Capability" *Encyclopedia of Nanoscience and Nanotechnology*, Marcel-Dekker, **2004**

Battelle

POC: Shane Addleman

Functionalized TiO₂ Nanoparticles for Subsurface Injection

TiNano40TM Characteristics

Surface Area (BET)	51.2 m2/g
Particle Density	3.88 g/cm3
Particle Size	40 – 60 nm
TiO2	99.8%
Impurities	0.2%
(ZrO2, SiO2,	
CI, P2O5, ZnO)	
Crystalline Phase	Anatase

Anatase Nanoparticle Injection Tests

An aqueous suspension of anatase (ammonium carboxylate ~ 2 wt %) was successfully injected in to a 100 cm long, 20 – 30 mesh sand column (~35% porosity).

The inlet pressure after injection of 3 pore volumes of suspension remained low (<14 psi).

An average of 4 wt % of anatase was uniformly distributed throughout the sand column.

Contact Solution: Hanford GW spiked v	vith 49.5 pCi/ml of Tc-99	
Hanford Ground Water (mg/l)		
Са	49.5	
NO3	8.6	
Mg	14.6	
SO4	64.7	
К	1.7	
Si	16.5	
Na	13.2	
CO3	60.8	
CI	16.4	
рН	8.3 (SU)	
FC	0.47 mS/cm	

Battelle

POC: Shas Mattigod

Tc-99 Sequestration by Functionalized TiO₂ Nanoparticles

Tc-99 Adsorption Experiments

Maximum Tc-99 loading: ~1.3 x 10^5 pCi/g. Tc-99 Kd: 1.5 x $10^2 - 4.0$ x 10^3 ml/g.

Summary

Anatase nanoparticles were successfully functionalized with Cu-EDA monolayers.

Cu-EDA anatase selectively adsorbed Tc-99 from spiked Hanford ground water.

Successful injection of an aqueous suspension of anatase nanoparticles into a sand medium was demonstrated.

Battelle

POC: Shas Mattigod