In-Well Test to Determine Indigenous Naphthalene Biodegradation under Sulfate-Reducing and Methanogenic Conditions

Carol Lee Dona, Ph.D, P.E., USACE Thomas Georgian, Ph.D., USACE Patricia Bowlin, US EPA John T. Wilson, Ph.D., US EPA Aaron Peacock, Ph.D., Microbial Insights Greg Davis, Ph.D. Microbial Insights Kerry Sublette, Ph.D., University of Tulsa Justin Barker, Shaw Environmental

US Army Corps of Engineers BUILDING STRONG®

Former McCormick and Baxter Superfund Site

Former Tie and Treating Plant in Stockton, CA

EPA Fund-lead Superfund Site

USACE, Seattle District, with support from the USACE Environmental and Munitions Center of Expertise, providing technical assistance to EPA Region 9

Revision of Focused Feasibility Study to include rigorous evaluation of MNA, along with updates of in-situ thermal, pump and treat, and other technologies/alternatives

Former Creosote Manufacturing Plant

Significant Amounts of Creosote DNAPL (1-2 million gal in Four Aquifer Zones (Down to -200 ft)

Polyaromatic Hydrocarbons (PAHs) of Interest

- Naphthalene PAH with the highest source concentrations and potential risk driver
- Acenaphthene PAH with furthest downgradient migration

Other EPA Superfund Sites with Similar Conditions

- Wyckoff, Brainbridge, WA
- McCormick and Baxter, Portland, OR
- Numerous Former Natural Gas Production Facilities

Why MNA Characterization

- I-2 million gallons of creosote DNAPL in the groundwater is MNA a viable technology?
- Questions to be answered in FFS
 - Can source removal technologies remove DNAPL to the extent it effectively reduces dissolved groundwater contaminant concentrations and the remediation time frame?
 - Can MNA alone control the dissolved phase plume?
 - What is the area that doesn't need to be actively treated, i.e. will naturally attenuate – optimization of the area of active source/dissolved phase treatment

Indications that Biodegradation of Naphthalene is Occurring

- Analyses by Cook College (Rutgers University) identified intermediate degradation products of naphthalene
- Naphthalene plume is relatively stable
- Comparison of Naphthalene and Acenaphthene Plumes
 - Naphthalene has highest source area concentrations
 - Naphthalene is lower molecular weight expected to be more mobile compared to acenaphthene but naphthalene is less widespread

Comparison of Naphthalene and Acenaphthene Plumes

B-Zone Naphthalene

B-Zone Acenaphthene

Questions To Be Answered for 3-D Modeling of Monitored Natural Attenuation

- Is naphthalene degrading under the predominant geochemical conditions in the aquifer (sulfate-reducing and methanogenic): In-Situ (Bio-trap) Study
- Rates of naphthalene degradation for modeling monitored natural attenuation: Lab Microcosm Study
- Spatial variability of naphthalene degradation: In-Situ (Bio-trap) Study
- Only naphthalene studied because of expense of 13C acenaphthene

What is Stable Isotope Probing (SIP)?

Answers the question is the COC being destroyed at this site?

11

Microcosms were loaded with ¹³C Naphthalene

Regular ¹²C Naphthalene

¹³C Naphthalene

In Situ Bio-Trap Study Design

- Individual traps (18) over the five different aquifer zones and within sulfate-reducing and methanogenic conditions across each zone
- Two pairs, one amended with sulfate, in a well most likely to provide samples for microcosm study. One pair removed at intermediate times to proof analytical methods.

¹³C Naphthalene

Bio-Sep Bead

BUILDING STRONG_ ${\ensuremath{\mathbb{R}}}$

Demonstration of Naphthalene Biodegradation Decision Rules

- Detection of carbon-13 in phospholipid fatty acids (microbial biomass).
- Detection of carbon-13 in carbon dioxide (microbial metabolic activity).
- Detection of carbon-13 in methane (microbial metabolic activity).
- Decision criteria was based on establishing the background carbon-13 levels for each compound and then calculating the 99% upper tolerance limit. Carbon-13 levels above the 99% upper tolerance limit were accepted as carbon-13 enrichment.

Phospholipid Fatty Acid Analysis

In Situ Bio-Trap Data

- Geochemical
 - sulfate, nitrate and dissolved methane
- Residual naphthalene concentrations on the Biosep beads.
- Carbon 13 in microbial biomass, CO₂ and methane.

¹³C Incorporation Results – Microbial Biomass

Carbon-13 Delta Lipid Membrane Values from Field-Deployed Bio-Traps[®]

Well	Geochemical Condition	Estimated Total Microbial Biomass (Cells/mL)	Estimated Total ¹³ C Biomass ^a (Cells/mL)	Percent ¹³ C Incorporation ^a	Average ¹³ δ ‰ Value ^b	Max ¹³ ð ‰ Value	Confirmed Degradation
DSW7A	Sulfate Reducing	3.6E+05	2.6E+03	0.7%	58	260	Yes
MW1A	Methanogenic	5.8E+05	5.5E+02	0.1%	53	110	Yes
SW171A1	Nitrate Reducing	9.7E+05	5.8E+03	0.6%	126	447	Yes
DSW2B	Sulfate Reducing	1.2E+05	7.5E+02	0.6%	64	160	Yes
DSW5B	Methanogenic	3.5E+05	2.6E+03	0.8%	48	180	Yes
DSW7B	Iron to Sulfate Reducing	1.8E+05	1.0E+03	0.5%	120	320	Yes
MW15C	Methanogenic	8.7E+04	1.4E+02	0.2%	10	30	Yes
MW8C	Methanogenic	1.3E+05	9.0E+01	0.1%	37	37	Yes
OFS4C	Sulfate Reducing	2.7E+05	1.3E+02	0.1%	28	81	Yes
ONS1C	Methanogenic	2.0E+05	3.7E+02	0.2%	21	34	Yes
MW18D	Methanogenic	6.7E+04	4.2E+02	0.6%	550	1700	Yes
MW19D	Sulfate Reducing	1.6E+05	1.6E+01	0.0%	19	37	Yes
ONS1D	Methanogenic	3.8E+04	3.3E+02	0.9%	140	330	Yes
MW20E	Methanogenic	1.4E+05	1.7E+02	0.1%	27	120	Yes
MW21E	Methanogenic	1.9E+05	2.8E+02	0.2%	24	94	Yes
MW24E	Low Sulfate	4.4E+04	0.0E+00	0.0%	9.0	14	Yes
MW4E	Methanogenic	5.2E+04	1.3E+02	0.3%	30	45	Yes
MW6E	Methanogenic	1.7E+04	0.0E+00	0.0%	6.0	9.0	Yes

Carbon-13 Delta Carbon Dioxide (Dissolved Inorganic Carbon) Values from Field-Deployed Bio-Traps®

Well	Replicate 1 ¹³ δ ‰	Replicate 2 ¹³ δ ‰	Average DIC ¹³ δ ‰	Percent ¹³ C	Confirmed Degradation
DSW7A	-30	-24	-27	1.1	No
MW1A	-14	-29	-21	1.1	No
SW171A1	-27	-28	-28	1.1	No
DSW2B	-14	-27	-20	1.1	No
DSW5B	-25	67	21	1.1	Yes
DSW7B	-32	142	55	1.2	Yes
MW15C	60	-17	22	1.1	Yes
MW8C	303	281	290	1.4	Yes
OFS4C	-17	-12	-15	1.1	No
ONS1C	-32	11	-10	1.1	No
MW18D	139	-28	55	1.2	Yes
MW19D	-27	-29	-28	1.1	No
ONS1D	-28	-32	-30	1.1	No
MW20E	-21	-32	-27	1.1	No
MW21E	122	112	120	1.2	Yes
MW24E	-12	42	15	1.1	Yes
MW4E	-23	-32	-28	1.1	No
MW6E	-28	-30	-29	1.1	No

Carbon-13 Delta Carbon Dioxide (Dissolved Inorganic Carbon) Values from Field-Deployed Bio-Traps $^{\circledast}$

¹³C Incorporation Results

- ¹³C incorporation from Naphthalene above the acceptance threshold in microbial biomass was recorded in all 17 locations.
- ¹³C incorporation from Naphthalene above the acceptance threshold in CO₂ was recorded in 7 of the 17 locations.
- No ¹³C incorporation was observed in methane.

Microbial Biomass (TEAP)

Microbial Biomass

¹³C Microbial Biomass

BUILDING STRONG®

Mean

Mean±SE

Mean±1.96*SE

Microbial Biomass (Aquifer Zone)

Microbial Biomass

¹³C Microbial Biomass

Community Composition (TEAP)

Monounsaturated PLFA

Normal Saturated PLFA

Community Composition (Aquifer Zone)

Monounsaturated PLFA

Microbial Activity Biomarkers

TEAP

Aquifer Zone

Conclusions

- The ability of the microbial community to degrade naphthalene at the McCormick and Baxter Site appears to be (is) widespread.
- TEAPs and Aquifer Zone (Physical Location) both influenced the microbial community biomass, composition, physiological status and the resulting naphthalene degradation.

Questions? Contact Carol Lee Dona <u>carol.l.dona@usace.army.mil</u> Aaron Peacock aaron.peacock@peakenvbio.com

CORPS OF E

ENGINE

BUILDING STRONG®

AND SUPPORT CENTER

IIIS