

## Using High Resolution Site Characterization to Improve Remedy Design and Implementation



Stephen Dyment U.S. EPA Office of Superfund Remediation and Technology Innovation dyment.stephen@epa.gov Making the Case for Targeted High Resolution Characterization

## What is "Optimization" (Working Definition / March 2011)

Systematic site review by a team of independent technical experts, at any phase of a cleanup process, to identify opportunities to improve remedy protectiveness, effectiveness and cost efficiency, and to facilitate progress toward site completion.

## **Background on EPA Optimization Efforts**

- 2000 Piloted optimization at 20 Fund-lead P&T sites
- 2002 Began applying monitoring optimization for ground water sites, MAROS evaluations
- 2004 -- Superfund adopted the "Action Plan for Remedy Optimization" for Fund-lead P&T sites
- 2007 Began applying optimization during remedy design and remedy redesign stages, branching out beyond P&T and Fund-lead
  - RP lead sites, State lead, Federal facilities
  - Former Industrial facilities, landfills, sediment sites, mining sites, etc.
  - NAPL recovery, thermal remediation
  - Sediment capping
  - Biosparging
  - Soil capping
  - NAPL recovery, chemical oxidation
  - Air sparging / soil vapor extraction/ groundwater recirculation wells
  - Barrier walls
  - Constructed wetlands
  - Surface water collection and treatment, water diversion
- Currently Triad Approach, Green Remediation, and Five Year Review assistance all incorporated into optimization

#### **Optimization Results To Date** Based on an analysis of 52 of 100 optimized sites

Cost savings

no ecological exposures



confirm no human

exposures

Similarly positive findings for the other 48 optimized sites...

and >\$350M in potential cost savings/avoidance for all 100 sites.

~45% of sites include recommendations for CSM or characterization improvement!

62% improve or confirm control of plume migration

### **Optimization Applied at Every Stage of the Pipeline**



# **Common Themes Emerge**

- Need for improved CSMs including use of existing information
  - CSM chemistry and hydrogeology critical factors in assessing costeffective alternatives

#### Insufficient characterization

- Source delineation, concentrated mass transport (mass flux), aquifer structure and COC properties
- Data management
- Cost control- overwhelming the matrix
  - Large footprint vs. small footprint sites
  - Source treatment (e.g., SVE, ISCO) incomplete, combined remedies and active treatment zones

## **CSM Evaluation in Post-Construction Optimization**

- CSM is THE tool necessary for assessing cost-effective alternatives to current remedies
- Examples from optimization warrior (USACE)
  - Region 9 RP lead, disposal pits received liquid waste SVE removing >4000 lb/VOCs per quarter for >4 years
    - Optimization study indicates DNAPL likely, recommends aggressive source treatment
  - Region 5 State lead, historical machine shop/retail strip mall, building limits source investigation for VOCs
    - ISCO pilot shows significant reduction, team reluctant to go fullscale, afraid still won't turn off P&T
    - Optimization recommends further source characterization and aggressive treatment

## Optimization Case Study Grants Chlorinated Solvents

- Optimization conducted during early design stage
- Large PCE plume from former dry cleaners
- ROD signed in June 2006
  - In-situ thermal remediation
  - In-situ chemical oxidation
  - In-situ bioremediation
  - Vapor mitigation
- Pre-design activities (with more investigation) underway during optimization
- Limited data available relative to other sites in design stage
- \$29 million ROD estimate for remediation



## Grants Chlorinated Solvents Optimization Findings

- Presence of contamination in thin lenses
- Potential for substantial mass to have already migrated from source area
- Potentially less mass in subsurface than assumed in ROD cost estimates
- Need for additional information to help refine/confirm CSM
- Cost for remediation documented in ROD is likely overestimated



The early design phase was a good opportunity to contribute to the CSM.

## Grants Chlorinated Solvents Optimization Recommendations

- Based on additional characterization (that remains to be collected)
  - Reconsider thermal remediation for source area, or at least refine treatment volume and location *(technology/approach & CSM)*
  - Reevaluate remedy approach for plume core and amounts of chemicals/nutrients for remediation (technology/approach)
  - Reconsider remedial goals and time frames for comparing alternatives and determining progress... affects exit/remedial strategy (strategy & performance monitoring)
  - Use extracted groundwater for chemical blending/injection (technology/approach)
- Monitoring well locations/screen intervals suggested (performance monitoring) "Reconsided

*"Reconsider" and "reevaluate" suggest iterative/dynamic process.* 

## **Grants Chlorinated Solvents**



## Grants Solvents- Changes to Remedy Design from Optimization Review

- Additional source area characterization completed
- Additional monitoring wells installed and screened appropriately
- Area for thermal remediation reduced in size and relocated
- MNA being considered for a portion of the plume (reducing the area for active remediation)
- Chemical/nutrient amounts being reevaluated
- Revised cost estimate is \$11 million lower



## **CSM Life Cycle Mimics Project Stages**

| General<br>Environmental<br>Cleanup Steps            | CSM Life Cycle                          | E<br>Mana<br>Pra<br>SPP | Best<br>agement<br>ictices<br>DWS/<br>RTMT | CERCLA - Superfund                                                                                                                                                                                  | RCRA                                                                                                    | Brownfields                                                                                         | UST                                                                                                                             | VCUP<br>Varies by<br>State | IRP/ERP                                                                  | MMRP                                                      |
|------------------------------------------------------|-----------------------------------------|-------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|
| Site Assessment                                      | Preliminary CSM<br>Baseline CSM         |                         |                                            | Preliminary Assessment (PA)<br>Site Inspection (SI)<br>National Priorities List (NPL)<br>No Further Remedial Action<br>Planned (NFRAP)                                                              | Facility Assessment<br>(RFA)                                                                            | Phase I<br>Environmental Site<br>Assessment (ESA)                                                   | Initial Site<br>Characterization<br>Initial Response                                                                            | PA<br>SI                   | PA<br>SI                                                                 | PA<br>SI<br>MR Site Prioritization<br>Protocol (MRSPP)    |
| Site Investigation<br>and Alternatives<br>Evaluation | Characterization<br>CSM Stage           |                         | Y                                          | Remedial Investigation/<br>Feasibility Study (RI/FS)<br>Removal Actions - Emergency/<br>Time Critical/Non-Time-Critical                                                                             | Facility Investigation<br>(RFI)<br>Corrective Measures<br>Study (CMS)                                   | Phase II ESA                                                                                        | SI<br>Corrective Action<br>Plan (CAP)                                                                                           | RI/FS                      | RI/FS<br>NFRAP                                                           | RI/FS                                                     |
| Remedy<br>Selection                                  | Design CSM<br>Stage                     |                         |                                            | Proposed Plan<br>Record of Decision (ROD)                                                                                                                                                           | Statement of Basis<br>(SB)<br>Final Decision<br>and Response to<br>Comments                             | Remedial Action Plan<br>(RAP)                                                                       | Cleanup Selection                                                                                                               | ROD                        | Proposed Plan<br>ROD                                                     | Remedy Selection                                          |
| Remedy<br>Implementation                             | Remediation/<br>Mitigation CSM<br>Stage |                         |                                            | Remedial Design (RD)<br>Remedial Action (RA) –<br>Interim and Final                                                                                                                                 | Corrective Measure<br>Implementation (CMI)                                                              | Cleanup and<br>Development                                                                          | Corrective Action<br>- Low-impact site<br>cleanup<br>- Risk-based<br>remediation<br>- Generic remedies<br>- Soil matrix cleanup | RD<br>RA                   | RD<br>RA – Interim<br>and Final<br>Remedy in<br>Place (RIP)              | RD<br>Time Critical Removal<br>Action (TCRA)<br>RA<br>RIP |
| Post-<br>Construction<br>Activities                  | Post-Remedy<br>CSM Stage                |                         | V                                          | Operational & Functional Period<br>Operation & Maintenance (O&M)<br>Long term monitoring (LTM)<br>Optimization<br>Long Term Response Action<br>(Fund-lead groundwater/surface<br>water restoration) | O&M<br>On-site inspections<br>and oversight                                                             | Property<br>Management<br>Long-term O&M<br>Redevelopment<br>Activities (Private-<br>and Public-led) | LTM                                                                                                                             | O&M<br>LTM                 | Shakedown period<br>Operating Properly<br>and Successfully<br>O&M<br>LTM | Shakedown period<br>Long Term<br>Management               |
| SITE COMPLETION                                      | Ļ                                       |                         |                                            | Construction Complete (CC)<br>Preliminary or Final Close Out<br>Report (PCOR/FCOR)<br>Site Completion - FCOR<br>Site Deletion<br>O&M as appropriate                                                 | Certification of<br>Completion<br>Corrective Action<br>Complete with<br>Controls or without<br>Controls | CC<br>Property<br>Management                                                                        | No Further Action<br>(NFA)                                                                                                      | CC                         | Response<br>Complete (RC)<br>NFA                                         | RC<br>NFA                                                 |

Trends in RODs and Decision Documents Selecting Groundwater Remedies (FY1986 - 2008) Total Groundwater RODs and Decision Documents = 1,727



• Groundwater Other includes institutional controls and other remedies not classified as treatment, MNA, or containment.

- Note: Other remedies selected prior to 1998 may be under represented in figure.
- RODs and decision documents may be counted in more than one category.
- RODs from FY1986 2004 include RODs and ROD amendments.
- Decision documents from FY2005 2008 include RODs, ROD amendments, and select ESDs

April 2010

Superfund Remedy Report

## **Collaborative Data Sets Address Analytical**



### Leads Us Back to the Need for High Resolution Tools are Important- But Also How We Deploy







3.11

Examples of tools that provide real-time data

| Technology                                                                                                                | Matrices                       | Data Provided                                                                           |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------|
| LIF/UV methods (Lasers, UV lamp)                                                                                          | Water, soil                    | TPH, PAH, Coal Tar                                                                      |
| Geophysical tools – surface<br>EM, Resistivity, GPR , acoustic                                                            | Soil, fill, bedrock            | Sources, pathways, macro-<br>stratigraphy, and buried objects                           |
| XRF (screening and definitive)                                                                                            | Soils, material surfaces       | Metals                                                                                  |
| MIP (ECD, PID, FID, ECD, XSD)                                                                                             | Soil, water                    | VOCs, hydrocarbons, and DNAPL                                                           |
| Neutron Gamma Monitors                                                                                                    | Soil, water, material surfaces | Radiation                                                                               |
| Hydraulic conductivity profilers                                                                                          | Soil, water                    | Hydraulic conductivity, lithology                                                       |
| Geophysics – downhole (natural<br>gamma ray, self potential, resistivity,<br>induction, porosity/density, and<br>caliper) | Soil, fill, bedrock            | Lithology, groundwater flow,<br>structure, permeability, porosity,<br>and water quality |
| CPT, high-resolution piezocone                                                                                            | Soil, water                    | Lithology, groundwater flow                                                             |

## Lead Niton vs. ICP

59 Total pairs



### **3-Way Decision Structure** With Region of Uncertainty

59 Total pairs



#### Analysis Of Soil Conductivity Log to Select Soil Sampling Intervals





## **Example of Collaborative Data Set**

Lead Soil Results Below 400 ppm-Green

Bottom of Landfill Lead Soil Results Above 400 ppm- Red

Predominance of Lead Soil results Below 400 ppm Under Marsh Surface-No Vertical Migration from Landfill to Underlying Soil

Combined Data Set of Conductivity, Lithology and Lead Soil Results

## **Increasing the Value of High Resolution Approaches**

- Dynamic work strategies- facilitated by real time measurements and decision logic
- Collaborative data sets
  - Multiple independent data sets

### Deployment

- Transects vs. hope and poke
- Depth profiling
- Groundwater elevation gradients can be poor predictors of localized flow
- Remedy areas of focus, mature plume areas vs. invasion fronts

## Groundwater Challenges How "well" do you understand your site?

Technology used influences your resulting site understanding

#### Size of measurement must be appropriate for scale of heterogeneity

- Variability of hydraulic conductivity / other parameters
- Steep concentration gradients vertically and at plume edges
- Heterogeneous distribution of DNAPL sources

#### Conventional monitoring wells are not optimal investigation tools

- Wells yield depth-integrated, flow-weighted average data
- Cannot discern heterogeneities that control contaminant transport
- Good technology for long-term monitoring

#### Beware biased well locations [hope & poke]

- Majority of uncertainty comes from data gaps between wells [hope]
- Majority of investigations rely on limited number of wells [poke]

#### **BMP- Transects and vertical profiling**

- Effectively delineate groundwater impacts
- Find appropriate monitoring well locations and screen intervals

#### Effects of depth-integrated, flow weighted averaging Well results less than vertically profiled concentrations



## **Conceptual Site Model** Are We Effectively Using Data or Confusing Data?



Well 12A Superfund Site Tacoma, Washington Figure 2-6 Trichloroethylene in Soil

### The Value of Seeing the Whole Picture in 3-D



#### Federal Remediation Technologies Roundtable

## Where Do We Go From Here?

- Continued improvements to CSMs
  - Lifecycle use as a planning, management, decision making tool
  - 3D visualization and decision support tools (DST matrix)
  - Data management

#### Characterization strategies and tools

- For soil projects incremental and composite designs, adaptive QC targets areas of highest variability
- Mapping mass storage vs. transport zones (Tool needs- CPT example)
- Aquifer characteristics (gradients, velocity)
- Contaminant and reagent mass transfer behavior

### Outreach and training

- High resolution site characterization course under development
- Continued technical support- 3D, tools, strategies, identify research needs (tools and strategies)

## Questions

