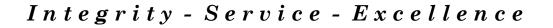
Headquarters U.S. Air Force

Integrity - Service - Excellence

Air Force Long-Term Monitoring Optimization Tools

AFCEE/TDV Phil Hunter, P.G. 2011 May



Products and Services AFCEE Restoration Branch

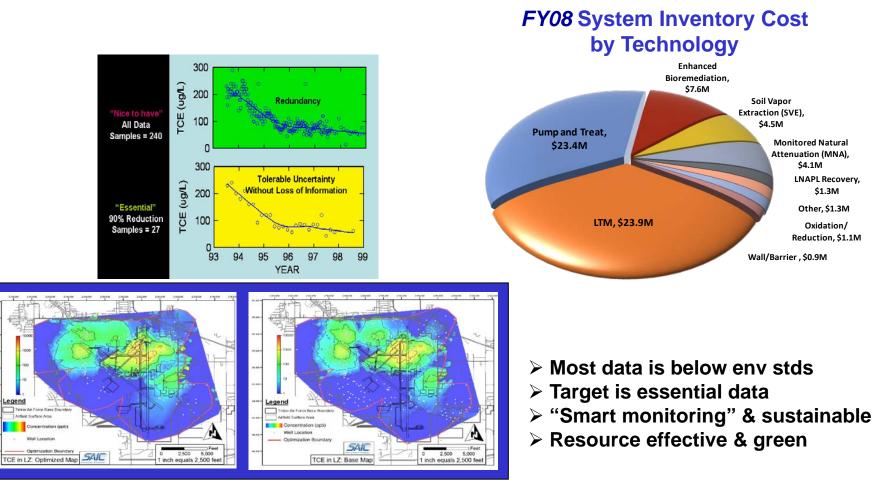
✓ Staff
✓ Mission
✓ Goals
✓ Products and Services
✓ Funding
✓ Issues

✓ Organization

- Peer Review Support
- Decision Support & Analysis
- Rapid Site Characterization
- Innovative Technologies
- Performance Based Remediation (PBR)
- Consulting Services
- Exit Strategy Development
- ROD Reviews
- 5-Year Review Support
- LTM Optimization
- Emerging Issues

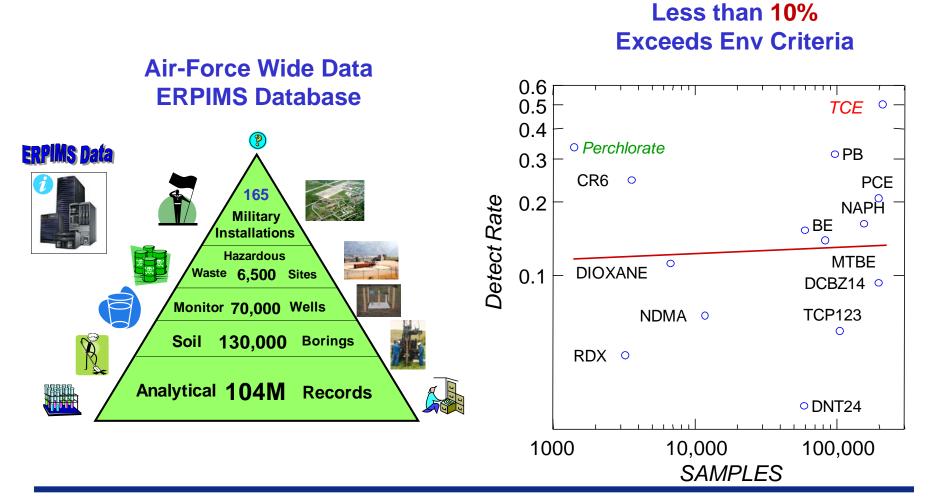
EDITT

RP-O Tracke



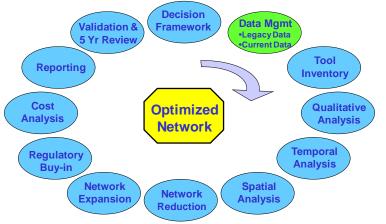
Performance Based Remediation (PBR) Role of LTMO Tools

- Fence-to-fence approach
- Contracts are fixed price and regionalized
- > AF Provides a preferred inventory of tools without fee
- Contractors should be familiar with tools and have relevant experience & training
- > AF needs standardized approach to negotiate with regulators and validate PBR proposals
- Some orphan sites & installations are optimized out-of-cycle from PBR contracts



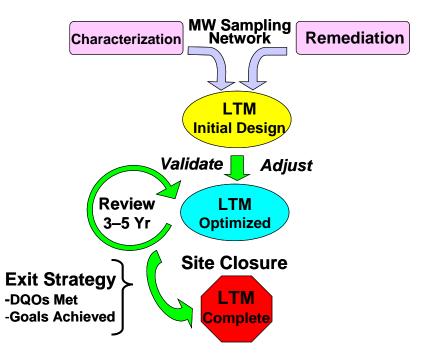
U.S. AIR FORCE

What are We Monitoring? 90% of Data are Below MCLs/PRGs

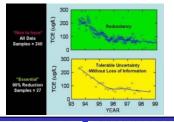

Integrity - Service - Excellence

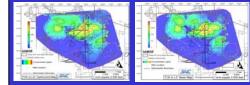
> Describe existing monitoring program

- Wells, coordinates, events, & analytes
- CSM and aquifer zones
- > Tool selection & optimization scope
- Create & edit dataset
- > Analysis
 - Reduce redundancy
 - Propose new monitoring plan
 - Expand coverage with new wells
 - Cost benefit analysis

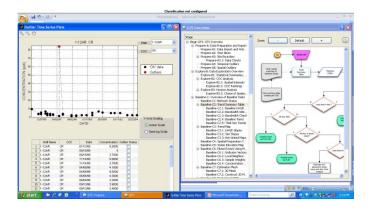


- Determines essential / redundant wells and placement of new wells
- Calculates optimal sampling frequency
- Typical LTM cost savings: 20-40% per site, up to \$1M per installation; savings are cumulative
- Formal test for trend
- Essential to PBRs & 5 Yr Review
- Standard reports

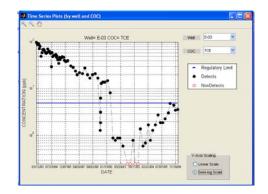

-Costs to perform optimization is about 10% of O&M budget -Return on Investment = 1-2 yrs

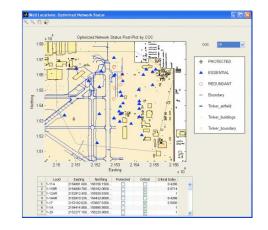


- Decision logic and formalized approach
- > Optimal sampling plan proposal
- New well locations to expand coverage & reduce uncertainty
- Living dataset
 - GIS capability
 - Time series graphics
 - Ability to flag anomalous data
- > Excellent tools for risk communication
- > Free-public domain software



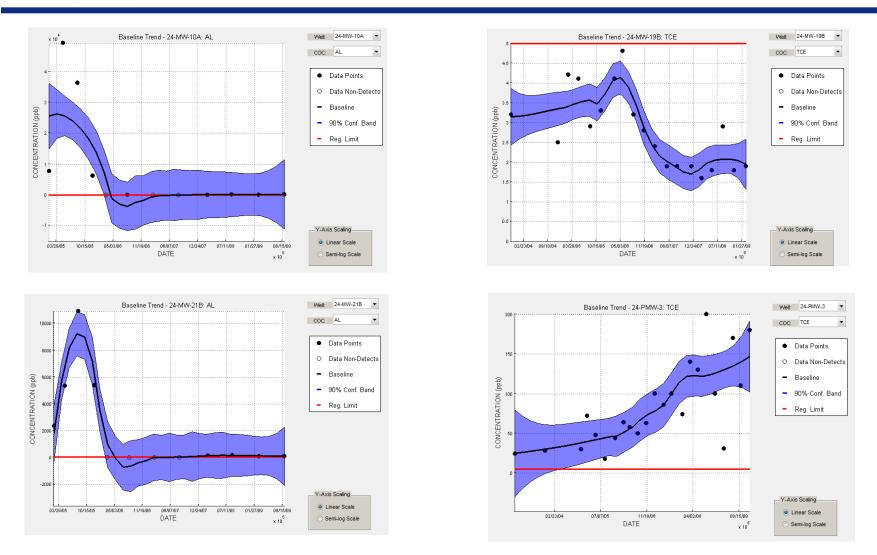
Tool Features


Transparent Decision Logic

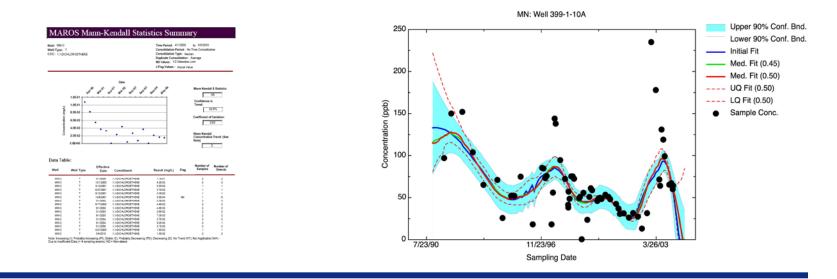

Formal Test for Trend

GTS Well ID	Loc ID	Trend Type	Par Label	Easting	Northing	Slope (ppb/day)	Slope Significant (p<0.1)	Lower 90% Confidence Bound (ppb)	Upper 90% Confidence Bound (ppb)	Regulatory Limit (ppb)	Trend Direction	Regulatory Exceedance
9	E-04	LWQR	CR	796273.1	404182.4	-0.0042	Yes	9.269	11.424	100	DECR	NO
		INSUFFIC										
10	E-04M	IENT	CR	796268.2	404169.5		No			100	FLAT	NA
29	EL-01	LWQR	CR	803442	400602	-0.00396	Yes	9.686	12.686	100	DECR	NO
30	EL-02	LWQR	CR	801093.2	403219	0.00599	Yes	14.849	24.023	100	INCR	NO
31	EL-03	LWQR	CR	799307.6	403114.9	-0.00746	Yes	2.471	4.491	100	DECR	NO
32	EL-04	LWQR	CR	796985.4	403395.4	-0.00249	Yes	10.791	12.525	100	DECR	NO
33	EPA-01	LWQR	CR	795412.1	403906.3	-0.00674	Yes	-2.435	11.378	100	DECR	NO
35	EPA-02A	LWQR	CR	796647.6	404489.8	-0.00448	Yes	11.002	14.105	100	DECR	NO
		INSUFFIC										
36	EPA-03	IENT	CR	798228.5	405950.5		No			100	FLAT	NA
37	EPA-04	LWQR	CR	794893.5	405309.3	0.003	Yes	6.164	14.187	100	INCR	NO

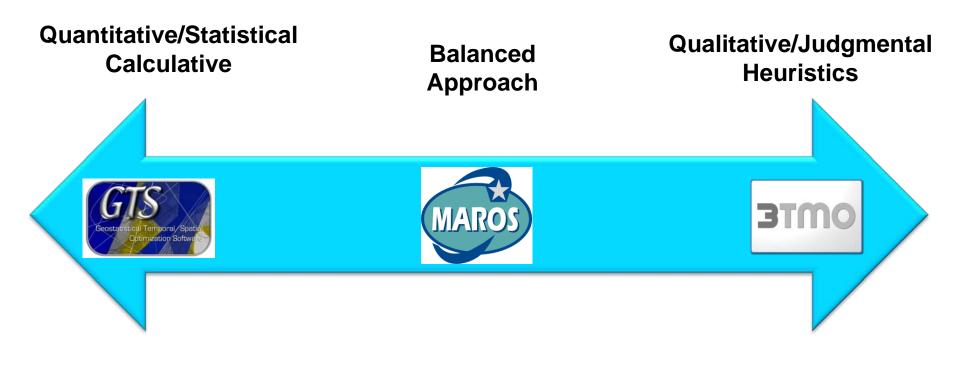
Time Series Plots



Essential Wells

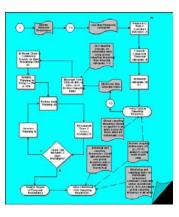

Creating a Monitoring Knowledge Base Centralized, Comprehensive, Dynamic

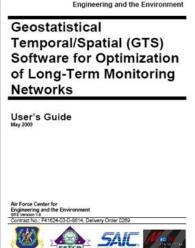
U.S. AIR FORCE



- Geostatistical Temporal-Spatial (GTS) optimization software
- Monitoring and Remediation Optimization System (MAROS) software
 - **3TMO (3-Tiered Monitoring Optimization tool)**

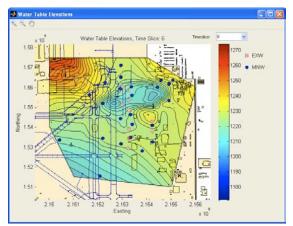
LTMO Tools How They Compare...



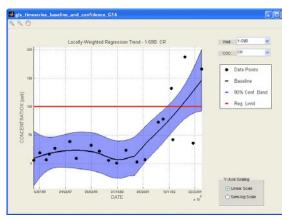

GTS Features

Air Force Center for

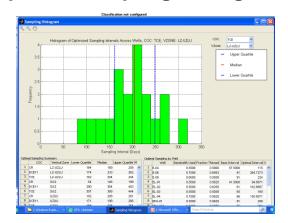
Algorithm-based

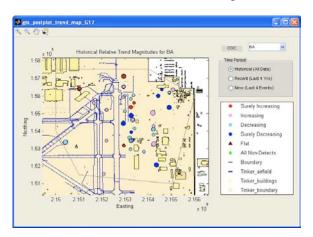

Unique Features

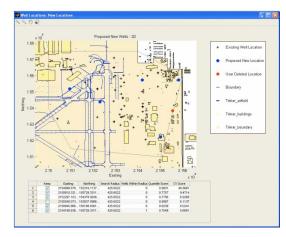
- Highly quantitative; focus on geostats
- Balance between full-scale expert system & heuristic model
- Designed for midlevel & expert analysts; numerous defaults
- Geospatial analysis uses quasi-genetic algorithm
- Installation-wide or individual site analysis



Water Table Maps


U.S. AIR FORCE

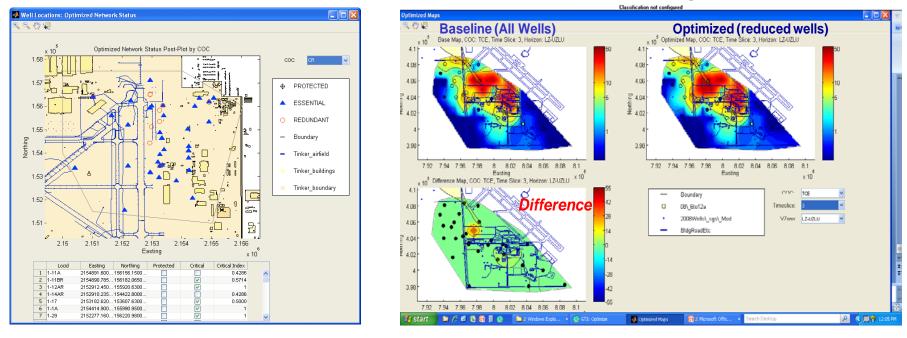

Non-Linear Trend Analysis

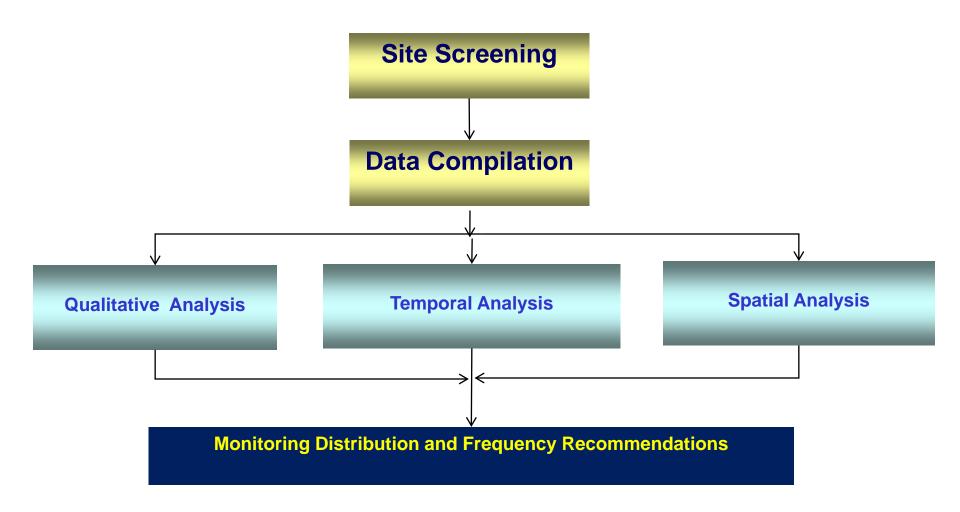

Optimal Sampling Histogram

"Bubble" Trend Maps

Proposed New Wells

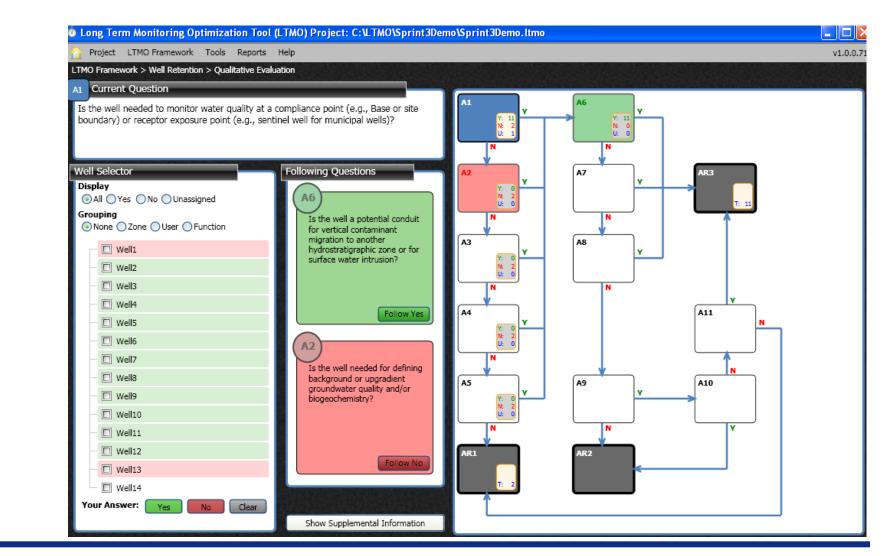
Cost Benefit Analysis

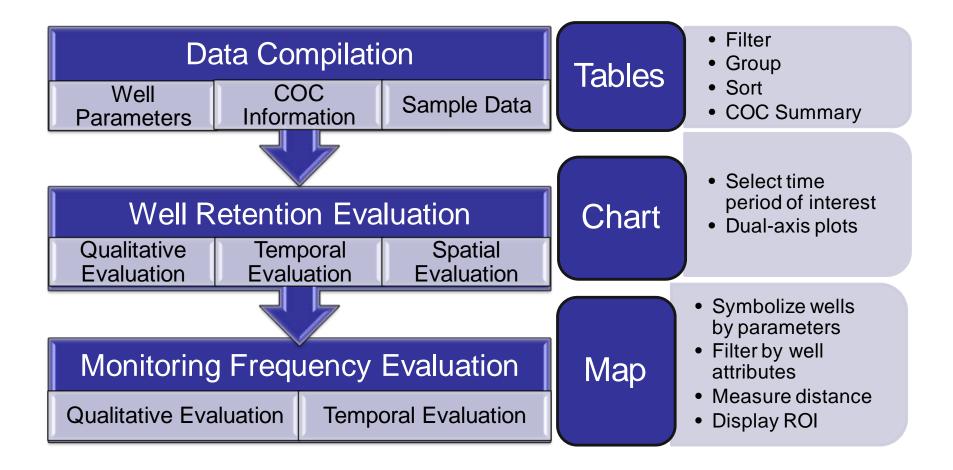

Ber Der Bert ihrer Bert Weiter	Exce			tion for help	
😧 🖉 Verdana 🔹 10 🔹 🖪 🖌 🖳	8.3	S %	1.15) 🖽 • 🌺 •	
+ fr	_	-		-	
B C	_	D		E	
a	_				
Summary					
<< Back				Home	
Enter Site No	me				
		Baseline	0	Optimized	
		Program	Program		
Wells Monitored Per Year		115		96	
Annual Costs					
Sample Analysis	\$	207,000	\$	122,400	
Field Sampling Labor		36,000	\$	30,720	
Sample Shipping	\$	13,800	\$	7,950	
Sampling Materials and Equipment	\$	6,325	\$	5,280	
Chemistry Data Management		12,190	\$	6,996	
Reports and Meetings		30,500	\$	30,500	
Project Management, Administration, and QA		6,720	\$	6,720	
Total Annual Program Cost	\$	313,335	\$	210,566	
Potential Cost Savings			5	102,769	
Percentage Reduction from Baseline				32.80%	


GTS Features

Essential & Redundant Well Map

Plume Comparisons Baseline vs Optimized



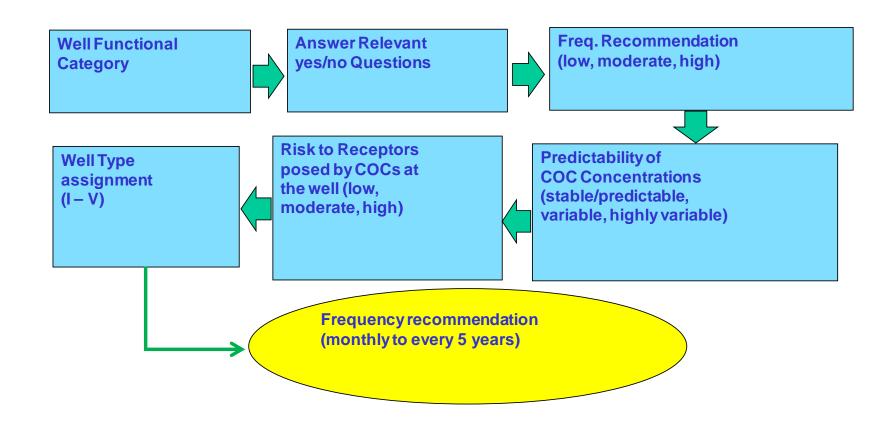

3TMO Well Retention Analysis

3TMO Well and Frequency Analysis

Well Analysis

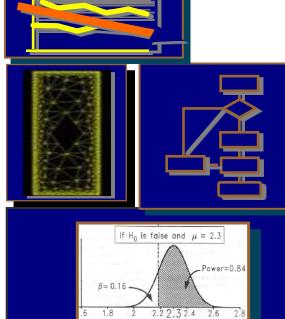
Qualitative Evalu	ation	
Decision Diagra	m (yes/no questions)	
Temporal Evalua	tion	
Mann-Kendall TChart Tool	rend Calculations	
Spatial Proximity	Evaluation	
Map Tool		
Combined Evalu	ation Summary	

- 3 sets of results
- Determine final retain/exclude recommendations
- Enter rationale (optional)


Well Type & Frequency

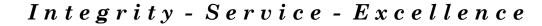
		Risk to Receptors					
		Low	Moderate	High			
ity of tions	Predictable	Type I	Type II	Type III			
Predictability of COC Concentrations	Variable	Type II	Type III	Type IV			
Pred Con	Highly Variable	Type III	Type IV	Type V			

	Type I	Type II	Type III	Type IV	Type V	
High Frequency	Biennial	Annual	Semi-annual	Quarterly	Monthly	
Moderate Frequency	Every 3 Years	Biennial	Annual	Semi-annual	Quarterly	
Low Frequency	Every 5 Years	Every 3 Years	Biennial	Annual	Semi- annual	

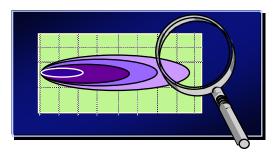

3TMO Frequency Analysis Path

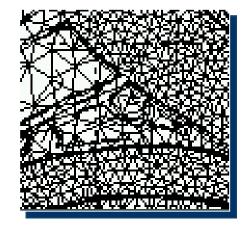
- **Summary Statistics**
- **Plume Stability Analysis**
- Sampling Frequency
- Well Redundancy/Sufficiency
- Data sufficiency/attainment

- Built on MS Access Platform full \succ database analyses
- Modular \succ
- Simple statistical and heuristic \geq tools;
 - **Trend Analysis**
- - B = 0.16


Qualitative 'Lines of Evidence'

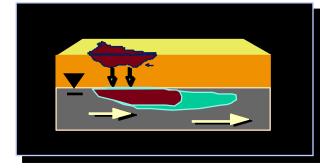
- Individual Well and Plume-Wide
 - Individual Well Analyses
 - Rate of change well concentration, linear regression slope (+ or -)
 - Trend of concentration change
 - Decision logic sample size, [C] vs. MCLs
 - Plume-Wide all wells
 - Rate of change total mass (zeroth moment), linear regression slope (+ or –) and R²
 - Coefficient of variation
 - Decision logic GW flow velocity





Redundancy

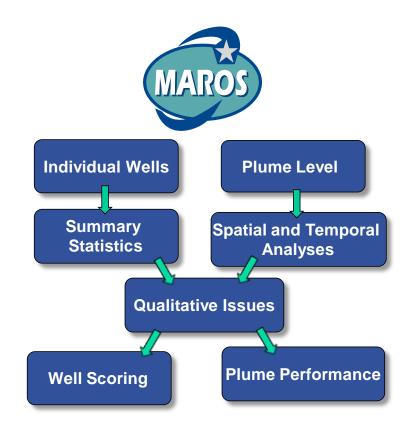
- Delaunay Triangulation
 - Automated optimization
 - Manual removal of low-rank wells
 - Plume mass impact
 - Plume area impact
 - Compare to 'reasonable' error limits
- Sufficiency
 - Identify areas of high uncertainty
 - Identify monitoring objectives



MAROS Plume Analysis

Moment analysis

- Well choice (wells sampled routinely over time)
- Sample Event choice
- Estimates and trends
 - Total dissolved
 - Center of mass
 - Spread over time


- Plume stability by monitoring objective

MAROS Upgrade Version 3.0

MAROS Updates

- Data Input
- Summary Statistics
- Monitoring Objectives
- Qualitative issues
- Moment Analyses
- Redundancy/Sufficiency
- Sampling frequency
- More User Options
- Compatibility

Status of Tools Availability

> GTS

- Publically available as Vers 1.0
- AF approved software 2011 Summer

> MAROS

- Upgrade in process; new version out 2011 Sept
- New features & compatibility with MS Office 2007

> 3TMO

- New software development
- Publically available 2011 Summer

Tool Resources More Information

> GTS

- http://www.afcee.af.mil/resources/restoration/ltm/index.asp
- Philip.hunter@us.af.mil; kmacstat@qwest.net
- http://www.estcp.org/Technology/ER-0714-FS.cfm
- > MAROS http://www.gsi-net.com/software/free-software/maros.html
- > **3TMO-** John.Hicks@parsons.com

- > LTM is a major life-cycle enterprise for the corporate AF and DoD
- > Tools are robust and offer a wide range of capabilities for a diverse technical audience
- > Tool output is important for risk communication and negotiation
- Tools are an essential component of PBRs, 5 Year Reviews, remedy effectiveness, and ultimately site closure
- > Tools offer a green and sustainable approach to "smart" monitoring

