3D Site Characterization and Autonomous Remedial Process Monitoring Using High Performance Electrical Resistivity and Induced Polarization Tomographic Imaging

Tim Johnson, Mike Truex, Jason Greenwood, Chris Strickland, Dawn Wellman: Pacific Northwest National Laboratory

Roelof Versteeg: Sky Research

Fred Day-Lewis and John Lane: U.S. Geological Survey

William Major: NAVFAC

Acknowledgements

- ESTCP Environmental Resotoration Optimized Enhanced Bioremediation Through Four-Dimensional Geophysical Monitoring and Autonomous Data Collection, Processing, and Analysis, ER-2001717
- Andrews AFB
- CH2MHILL Plateau Remediation Company

Outline

- Autonomous Electrical Resistivity Tomography (ERT) characterization and monitoring systms.
- What and how we measure
- How we monitor spatial and temporal changes in electrical properties (time-lapse inversion)
- What does it mean in terms of properties we're interested in
- Examples

3

- Brandywine MD DRMO Superfund Bioremediation Monitoring
- Soil desiccation characterization and monitoring at the Hanford BC Cribs
- Concluding comments

Pacific Northwest

ELECTRIC GEOPHYSICAL MONITORING COMPONENTS

Pacific Northwest NATIONAL LABORATORY

Field scale electrical geophysical measurements

NATIONAL LABORATORY

3D characterization and monitoring flowchart

Baseline Characterization Inversion

Pore-scale current conduction mechanisms

Total Conductivity = ionic + electronic + interfacial

Brandywine MD DRMO Superfind Site

DRMO Enhanced Bioremediation

Site location

Remedial Action

- Amendment injections at ~1000 injection points

- Injection point spacing ~ 20 ft

- Dem/Val effort monitored two of the injections at edge of March/April 2008 treatment area

ERT/IP Monitoring Systems Details

• 8 Chem sample wells

7 ERT/Chem wells
ERT wells: 15 electrodes @
2 feet spacing. 2 inch
Sampling ports at 11,19 and
26 feet

-Sampling wells: sampling ports at 11 and 19 feet. Well screen at bottom (26 feet) -45 total sampling ports

-ERT data acquisition: repeat 3D survey with 35000 measurements

Time-lapse ERT imaging results

(signal results from changes in fluid conductivity) followed by changes in solid phase conductivity resulting from

Pacific Northwest NATIONAL LABORATORY

precipitation

11

Relating changes in bulk conductivity to changes in geochemistry

Proudly Operated by Battelle Since 1965

March 2008 to Jan. 2009 summary:

- Little microbial activity
- Rise and fall in bulk conductivity due primarily to
- sodium transport and subsequent dilution.

Relating changes in bulk conductivity to changes in geochemistry

results at sample ports.
Triangles are fluid conductivity measurements taken at sample ports

Jan 2009 to April 2010 summary

- Geochemical data suggest vigorous microbial activity
- Fluid conductivity decreases, bulk conductivity increases suggesting increase in interfacial conductivity (iron-sulfide precipitation)

Hanford BC Cribs Desiccation Treatability Test

Pacific Northwest NATIONAL LABORATORY

Background ERT Characterization

Section View

Oblique View

Pacific Northwest

4D desiccation induced changes in bulk conductivity

Proudly Operated by Battelle Since 1965

Other example applications

Vadose zone infiltration monitoring

Hyporheic exchange monitoring at Hanford along the Columbia River

116300

Conclusions

- Changes in subsurface electrical conductivity obtained from ERT inversions coupled with sparse supporting data from sampling can be interpreted with high confidence in terms of spatiotemporal information on remedial processes.
- Capability to 'see'in 4D
- Petrophysics are important
- Automation for long term monitoring is feasible

