

Advanced Simulation Capability for Environmental Management (ASCEM) Overview and Example Application

Mark Freshley¹, Vicky Freedman¹, Tim Scheibe¹, David Moulton², Paul Dixon², and Justin Marble³

Federal Remediation Technologies Roundtable, May 14, 2014

¹Pacific Northwest National Laboratory ²Los Alamos National Laboratory ³U.S. Department of Energy, Office of Environmental Management

What is ASCEM?

Advanced Simulation Capability for Environmental Management

- Modeling toolset currently under development for understanding and predicting subsurface contaminant fate and transport
- Organized into three thrust areas
 - High Performance Computing open-source, high performance simulator (Amanzi)
 - Platform tools that facilitate model setup and simulation execution (Akuna)
 - Applications demonstrate the tools through applications to real sites
- Completed initial user release of toolset

User Environment

Application to Hanford BC Cribs

- Former plutonium production site
 - Waste disposed from 1956 to 1958 to 6 cribs
 - Funnel-shaped with sloping sides (~3 x 3 m wide)
- Located a few meters bgs
- Thick vadose zone (~107 m)
- Primary contaminant of concern ⁹⁹Tc
- Traditional remediation technologies are ineffective
- Evaluate uncertainty impact on remediation

(Rucker and Fink 2007)

Problem Description

- Boundary Conditions
 - > 10 million gallons liquid waste released at 6 cribs
 - 1956 1958
 - ⁹⁹Tc primary contaminant
 - Source concentrations ~10⁶ pCi/L
 - Recharge at surface
 - Water table boundary at the bottom of the domain
- 320 m x 280 m x 107 m (~455K grid blocks)
- Executed simulation from 0 2008
 - 0 1956 period to attain steady state flow field
 - 1956 2008 transient

Model Setup

Major Stratigraphy

Incorporation of Heterogeneity

- Generated 100 realizations of three-dimensional lithofacies distributions using geostatistical model
 - Identified by k-means cluster analysis of ²³²Th and ⁴⁰K data (spectral gamma log data)
 - Three lithofacies identified, log data from 5 wells

Geologic Realizations

- Selected 10 realizations for demonstration
- Layering is the same, but smallscale variability in hetereogeneities captured

Property Assignments and Boundary Conditions

Parameter Estimation

Ticiti

- Permeability and porosity estimation
- ➢ Moisture content and ⁹⁹Tc measured in 2008 at Boreholes A & C
- Data obtained from database, accessed through web interface, and exported to Akuna

Parameter Estimation

Simulation 1956 – 2008

Uncertainty Quantification

- Varied recharge rate for 100 simulations for 2012 – 3000
 - Rates represent management actions (1 – 75 mm/yr)
 - Soil desiccation
 - Surface barriers
 - No-action
 - Soil flushing

> Metrics

- Peak concentration and arrival time at water table
- Time at which a threshold concentration is exceeded
- Launched on 9600 processor cores, 96 per simulation

Screenshot from UQ Toolset: Histogram of Recharge Rates

Uncertainty Quantification

- Time to peak occurs within 200 years, small variation with recharge rate
 - a) Mean and 95% confidence intervals for ⁹⁹Tc breakthrough at boreholes A and C
 - b) Histogram of time to reach peak concentration

Uncertainty Quantification

- Compare breakthrough curves for one conceptual model realization to all 10
 - Confidence intervals are wider when 10 realizations of the conceptual model are considered
 - Upper bound is ~85% higher at Borehole A for all ten models than for GR01

Mean and 95% confidence intervals for the ⁹⁹Tc breakthrough curve at Boreholes A and C for single and multiple geologic realizations

Conclusions

- > ASCEM facilitates model setup, execution, analysis, and visualization
- High performance computing enables multiple realizations of complex model through reduction in computational time
- Simulations of BC Cribs provides insight on controlling processes and properties for ⁹⁹Tc transport in the subsurface
 - Baseline conditions for "no action" alternative
 - Variation in recharge rate from soil desiccation and surface barriers
 - Variability in conceptual models impacted the magnitude of peak concentrations, but had minor impact on arrival times

Thank You!

http://ascemdoe.org/

Contacts:

Mark Freshley, Pacific Northwest National Laboratory Site Applications (mark.freshley@pnnl.gov)

Paul Dixon, Los Alamos National Laboratory ASCEM Multi-Laboratory Program Manager (p_dixon@lanl.gov)

Justin Marble, DOE EM ASCEM Federal Program Manager (justin.marble@em.doe.gov)

