Technical Guidelines for In Situ Sediment Remediation

Paul R. Schroeder, PhD, PE

Research Civil Engineer Environmental Laboratory

Federal Remediation Technologies Roundtable Reston, Virginia 11 May 2016

Engineer Research and **Development Center**

Objectives

- Supplement Contaminated Sediment Guidance (2005) with Technical Guidelines for Remediation Technologies (Monitored Natural Recovery, In Situ Capping and Removal)
- Provide technical guidelines for evaluating, designing, implementing and monitoring in situ remediation at contaminated sediment sites

Contaminated Sediment Remediation Guidance for Hazardous Waste Sites

Purpose

- Provide guidance for evaluation, design and implementation of contaminant exposure reduction technologies as components of contaminated sediment remediation projects
- Primarily intended for federal and state remedial project managers and remediation practitioners evaluating and designing remedial response actions or non-time-critical removal actions
- Focus is primarily on items that need consideration during design and implementation
- Also identifies data needs, provides screening considerations and assists comparisons among in situ remediation technologies based on effectiveness and implementability under existing site conditions

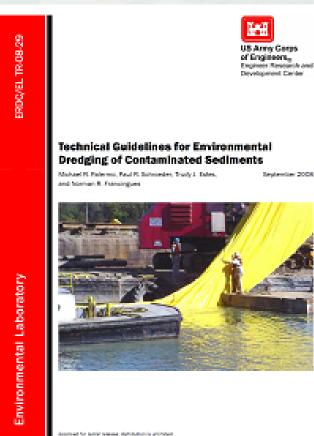
Sediment Remediation Technologies

- Technologies have been adapting and morphing into additional options, moving from the laboratory to demos and full-scale implementation
- Current set of technologies
 - Monitored Natural Recovery (MNR)
 - Enhanced Monitored Natural Recovery (Thin Layer Capping w/ or w/o Amendments)
 - In Situ Treatment
 - Amended Capping
 - Isolation Capping
 - Environmental Dredging/Removal

Guidance Document

Contaminated Sediments Remediation

Remedy Selection for Contaminated Sediments


August 2014

Prepared by The Interstate Technology & Regulatory Council Contaminated Sediments Team

Existing Technical Guidelines

 Environmental Dredging (Sept 2008)

 Monitored Natural Recovery (May 2009)

BUILDING STRONG

Innovative solutions for a safer, better world

Existing Technical Guidelines

In Situ Isolation Capping (June 1998 and Sept 1998)

Technical Report DOER-1 June 1998		United States Great Lakes EPA 905-B96-004 Environmental Protection National Program Office September 1998 Agency 77 West Jackson Boulevard Chicago, Illinois 60604
US Army Corps of Engineers Waterways Experiment Station	€E	PA Assessment and Remediation Of Contaminated Sediments
Dredging Operations and Environmental Research Program Guidance for Subaqueous		(ARCS) Program
Dredged Material Capping by Michael R. Palermo, James E. Clausner, Marian P. Rollings Gregory L. Williams, Tommy E. Myers, WES Thomas J. Fredette, New England District		GUIDANCE FOR IN-SITU SUBAQUEOUS CAPPING OF CONTAMINATED SEDIMENTS Michael R. Palerrino and Steve Maynord
Robert E. Randali, Texas A&M University		U.S. Army Engineer Waterways Experiment Station Vicksburg, Mississippi Jan Miller U.S. Army Engineer Division, Great Lakes and Ohio River Chicago, Illinois Danny D. Reble
		Lauisiana State University Baton Rouge, Louisiana
Approved For Public Release: Distribution Is Unlimited		
Approved For Public Release; Distribution is Unlimited		Order O
Prepared for Headquarters, U.S. Army Corps of Engineers		printed on recycled paper

BUILDING STRONG_®

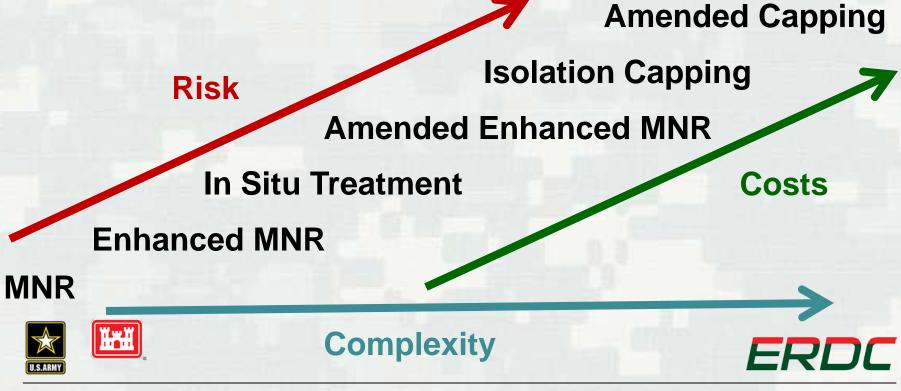
Innovative solutions for a safer, better world

Needs

Technical Guidelines for Active In Situ Technologies:

- Enhanced Monitored Natural Recovery (Thin Layer Capping w/ or w/o amendments)
- In Situ Treatment
- Amended Capping
- Update of Isolation Capping based on past 20 years of applications

Goals


- Provide technical guidelines for evaluating, designing, implementing and monitoring active in situ remediation at contaminated sediment sites
- Fill the gaps in the existing set of technical guidelines
- Update capping guidance, existing guidance limited to isolation capping
 - Address thin-layer capping and capping dredging residuals
 - Address new materials and methods including amended (reactive) caps
 - Address cap maintenance and rehabilitation
 - Consider natural recovery and recontamination
- Extend guidance to include enhanced monitored natural recovery (thin-layer capping) and in situ treatment using risk-based principles
- Apply risk-based principles; evaluate reduction in total exposure
 - Reduce concentration
 - Reduce bioavailability
 - Provide isolation

In Situ Sediment Remediation

 Represents a continuum of technologies of progressively greater action and cost to address less favorable site conditions and greater risk

BUILDING STRONG_®

Innovative solutions for a safer, better world

Technical Guidelines

- Overview of Risk Reduction Performance and Components
- Favorable and unfavorable conditions
- Data needs
 - Physical Characteristics
 - Sediment Characteristics
 - Contaminant Characteristics
 - Site Use
- Design and evaluation protocols
 - Lab testing
 - Modeling
 - Materials
 - Quantities
- Implementation and Equipment
- Monitoring

Site Characteristics

- Site characteristics are key to assessing net risk reduction, implementability, permanence, costeffectiveness and compatibility with site use.
 - Physical Characteristics
 - Sediment Characteristics
 - Contaminant Characteristics
 - Land and Waterway Use Characteristics

Physical Characteristics

Physical Characteristics	EMNR	In Situ Treatment	Capping
Sediment stability	Н	Н	Μ
Deposition rate	Н	Μ	Μ
In-water & shoreline infrastructure	L	Μ	Μ
Presence of hard bottom	L	L	L
Presence of debris	L	Μ	Μ
Hydrodynamics	Н	Н	Н
Conveyance	L	L	Н
Bathymetry and slope	М	Н	Н
Groundwater advection	Н	Н	Н
Ebullition	М	Μ	Н
Bioturbation depth/intensity	Н	Μ	Μ
H = critical $M = contril$	outing L =	unimportant	

Innovative solutions for a safer, better world

ERDC

BUILDING STRONG_®

Sediment Characteristics

Sediment Characteristics	EMNR	In Situ Treatment	Capping
Geotechnical properties	М	М	Н
Slope stability	М	Н	Н
Potential for liquefaction	L	М	Н
Erodibility	Н	Н	Μ
Potential for resuspension,			
release and residuals	L	М	Μ

BUILDING STRONG_®

Contaminant Characteristics

Contaminant Characteristics	EMNR	In Situ Treatment	Capping
Contaminant type (bioaccumulative			
or toxic)	Н	Н	Μ
Contaminant mobility and			
bioavailability	Н	Н	Н
Contaminant fate and transport	Н	Н	Μ
Risk reduction required	Н	Н	L
Extent of contamination	Н	Н	Н
On-going source impacts	Μ	Μ	Н
Source materials (e.g., NAPL)	Μ	Н	Н
Exposure pathways and risk			
estimates	Н	Н	Μ

Innovative solutions for a safer, better world

Land and Water Use Characteristics

Site Use Characteristics	EMNR	In Situ Treatment	Capping
Cultural and archeological issues	L	М	М
Site accessibility	L	М	Н
Current and future waterway use	Μ	Н	Н
Current and future land use	L	L	Μ
Presence of sensitive species or			
habitat	L	Н	Н

BUILDING STRONG_®

Innovative solutions for a safer, better world

Enhanced Monitored Recovery

- Acceleration of a proven ongoing recovery process by engineering means, usually the addition of a thin layer of clean sediment to kick-start the burial process and reduce bioactive zone contamination levels, possibly sequestering components
- Placed as a uniform thin (a few inches) layer, or in berms or windrows that can be further distributed by natural sediment transport processes
- Flow control structures for the waterway may be designed and placed to encourage sedimentation

Favorable Conditions for MNR		
Characteristic	Condition	
	Annual deposition >> annual erosion; net deposition rate > 1 cm/yr	
	Low shear stress environment under extreme conditions; less than 6 inches of erosion predicted in 100-year event	
distribution of contamination	Contaminant conc. increase with depth; depth of peak conc. is greater than 2 ft; surficial bioavailable concentrations are fairly uniform	
Required risk reduction	Typically, no more than a factor of 30	

MNR vs. EMNR

- Deposition: >1 cm/yr vs. 0.3 cm/yr to 1 cm/yr
- Risk Reduction: < factor of 10 vs. > factor of 20
- Natural Recovery Time: < 10 to 15 yr vs. > 20 yr
- Bioturbation: shallow (< 5 cm) vs. deep (> 10 cm)

In Situ Treatment

- In-place chemical, physical, or biological degradation or sequestration of contaminants in bottom sediments
- Reduce contaminant transfer up the food web by reducing uptake by benthic organisms, predominantly by sequestration
- Reduce direct contaminant flux to the water column
- Application of bentonite, clay polymers, and pozzolanic materials can bind contaminants and reduce permeability
- Enhance in situ contaminant degradation

BUILDING STRONG_®

Innovative solutions for a safer, better world

Favorable Conditions for In Situ Treatment		
Characteristic	Condition	
Deposition rate	Annual deposition ≥ annual erosion;	
	net deposition rate > 1 cm/yr	
Horizontal and vertical	Contaminant conc. increase with depth; depth	
distribution of	of peak conc. is greater than 2 ft; surficial	
contamination	bioavailable concentrations are fairly uniform	
Slope	Slopes greater than 10% pose difficulties in placing and retaining amendments and slopes greater than 20% are not suitable for most placement and mixing options	
Required risk reduction	Typically, no more than a factor of 100	
Groundwater advection	Characteristic net upward velocity < 0.5 cm/day	

Capping

- Physical isolation of the contaminated sediment from the benthic environment and water column
- Stabilization of contaminated sediments, preventing resuspension and transport to other sites
- Reduction of the flux of dissolved contaminants into the water column
- Capping materials may include clean sediments, sands, gravels, sand/silt/clay mixtures, or may involve a more complex design with geotextiles, liners, armor stone, reactive amendments and multiple layers.
- Conventional placement equipment and techniques are frequently used for a capping project, but these practices must be controlled more precisely than for conventional placement. Specialty equipment is often required for placing materials in complex capping designs.

Capping

Update includes:

- Integrated design instead of incremental design
 - How thick does it need to be?
- Assesses multi-functionality of materials and layers
- Cohesive cap materials
 - Do I need armoring?
- Contaminant sequestration
 - Do I need an amendment?
 - What type?
 - How much?
 - How long will it last?
- What is the potential for recontamination?
- How do I incorporate habitat?
 - Do I need to have extra material for habitat?

Innovative solutions for a safer, better world

BUILDING STRONG®

Favorable Conditions for Capping			
Characteristic	Condition		
Slope	Slopes >15% pose difficulties in placing and retaining capping materials; >25% are not generally suitable		
Geotechnical properties	Undrained shear strengths less than 0.5 kPA poses severe restrictions on placement		
Contaminant mobility	Kd > 3,000 L/kg		
Groundwater advection	Velocity << 1 cm/day unless amendment used; velocities greater than 1 mm/day promote contaminant flux		
Required risk reduction	Not critical but generally > a factor of 100		
Current and anticipated waterway use	Cap design and water depth must be compatible with waterway use and habitat		

Innovative solutions for a safer, better world

Physical Isolation vs. Amended Capping

- Groundwater: < 0.5 cm/day vs. > 1 cm/day
- Mobility: Kd > 10,000 L/kg vs. Kd < 3,000 L/kg</p>
- NAPL: Below residual saturation vs. above
- Allowable thickness: thick vs. thin
- Risk reduction factor: <300 vs. >1000

Status

- Internal and Sponsor Review
- Peer Review Draft
- External Peer Review
- Final Draft
- Publication
- Distribution

Completed Sep 2016 Nov 2016 Feb 2017 Mar 2017 Apr 2017

BUILDING STRONG_®

Innovative solutions for a safer, better world