Optimizing remediation approaches at mine sites: how understanding biogeochemical processes and modeling can guide mine treatment

Kate Campbell

US Geological Survey

Boulder, CO

Metal treatment strategies

Pump and Treat/ Conventional water treatment facilities

- Groundwater and/or surface water treatment
 Ion exchange, reverse osmosis, lime addition, etc.
- Constructed wetlands, covers
 - Surface water
 - Mine wastes
 - In Situ approaches groundwater
 - $\square \underline{\text{Reduction}} [U(VI) \rightarrow U(IV)]$
 - ✓ Biological: Organic carbon injection
 - ✓ Chemical: Sulfide injection
 - Mineral Precipitation
 - ✓ Soluble phosphate injection
- In Situ: Reactive Barriers

Metal mobility: importance of redox

Mineral precipitation/dissolution and adsorption Mining and remediation often perturbs redox state of system Effect of pH – redox– ligands on metal mobility

- 1. Equilibrium
- Disequilibrium
 Opportunity for biotic processes
 Kinetics of reactions important

 $4Fe^{2+}+O_{2}+4H^{+} \xrightarrow{} 4Fe^{3+}+2H_{2}O$ $3Fe^{3+}+6H_{2}O+K^{+}+2SO_{4}^{-2} \xrightarrow{} K(Fe)_{3}(SO_{4})_{2}(OH)_{6}+6H^{+}$ $8Fe^{3+}+14H_{2}O+SO_{4}^{-2} \xrightarrow{} Fe_{8}O_{8}(OH)_{6}(SO_{4})+22H^{+}$

Fundamental processes and modeling

- Improve modeling by increasing fundamental biogeochemical processes
- Identify key reactions
- Reaction Kinetics vs. equilibrium
 - Microbial processes
 - Precipitation

Biogeochemical modeling

Complexity: laboratory → field

Laboratory		Field
Batch reactors Pure cultures (bacteria) Synthetic water Pure mineral phases	In situ experiments	
Colu Micr Site-	Imn experiments obial community specific solids	Pilot and full- scale treatment/re mediation
Key processes	Rates	Heterogeneity and

complexity

Case studies

- Case study 1: Bioremediation of a uranium-contaminated aquifer
- Case study 2: Removal of dissolved uranium and surface passivation of ore by phosphate amendment
- Case study 3: Acid mine drainage (AMD) pipeline scaling

Case study 1: Bioremediation at Rifle, CO

In situ experiment: U(IV) re-oxidation rates

Biomass, other surface reactions retard oxidative dissolution

Campbell, KM, et al., ES&T 2011, Bargar et al., PNAS 2013

Field-scale Bioremediation

Microbial U(VI), Fe(III), sulfate reduction Removal: U, V, Se Increase: As

Acetate

40

Days

20

60

Fe(II)

80 100

3000

1000

0

300

250

0

Days since Beginning Acetate Injection

U(VI)

40

Days

Sulfate

20

0

8

60

80 100

1.4

1.2 1.0

0.8

0.6

0.4

M

Case study 2: Phosphate amendment

 $5Ca^{+2} + 3HPO_4^{-2} + H_2O \rightarrow Ca_5(PO_4)_3OH + 4H^+$

Hydroxylapatite

 $2H^{+} + 2UO_{2}^{+2} + 2PO_{4}^{-3} \rightarrow H_{2}(UO_{2})_{2}(PO_{4})_{2}$

Autinite

- Phosphate amendment effective as U(VI) treatment
- Can Ca-PO4 precipitation passivate surface of U(IV) ores?

Rates of precipitation and oxidation

The set of			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.1.200	the second se
HV	mag 🗆	HFW	WD	det	5 μm
5.00 kV	21 644 x	13.8 µm	10.4 mm	vCD	USGS

Next step: U ore column studies

Uranium remediation: case study 1&2

- Bioremediation reducing conditions
 - Challenging to control microbial community
- Phosphate amendment oxidizing or reducing conditions
 - Passivation of U(IV) surfaces may prevent continued oxidation
- Combined bioremediation/phosphate amendment

- Application:
 - In situ recovery (ISR mines)
 - Conventional mining
 - Legacy sites

Case study 3: acid mine drainage

Precipitation in AMD pipelines – "scale"

Iron Mountain Mine

Pipe scale requires costly clean-out at IMM every 2-4 years, and complete replacement of pipes at LM every year – *common problem in AMD pipelines*

Water chemistry at Iron Mountain Mine

Mechanism of scale formation

Iron Mountain Mine and Leviathan Mine samples

Mechanism of scale formation

Scale characterization

reference compounds

Scale characterization

0.0 kV 3.0 2500x

SF

79

composition: Fe₈O₈(OH)₆SO₄] with minor *Goethite* [FeOOH]

Geochemical model – batch experiments

Geochemical model – field observations

> Variable velocity in each section of pipeline

Remediation test 1: increased flow

- Doubling flow from 75 to 150 gpm slightly decreased amount oxidized
- Highest flow rate (1075 gpm) slowed Fe(II) oxidation
 - → Model can be used to simulate effect of running pipeline at higher flow rates
 - \rightarrow Effect on treatment plant operations

Remediation test 2: mixing with low pH water

Decreasing pH effective in preventing scale formation

Conclusions

- Understanding fundamental biogeochemical processes improves conceptual and numerical models
 - Balance complexity and broad applicability
- Strong links between microbiology, mineralogy, hydrology, and water chemistry crucial
 - Model development
 - Site management
- Case studies illustrate treatment approaches
 - Surface AMD
 - Aquifer bioremediation and phosphate amendment
 - Bridge laboratory to field scale

Thank you for your attention!

Acknowledgements:

- Lily Tavassoli (US EPA)
- Michael Hay (USGS/Arcadis consulting)
- Robert Runkel (USGS)
- Philip Verplanck (USGS)
- Amy Williams (UC Davis)
- James Sickles (US EPA)
- Rudy Carver (Iron Mountain Operations)
 - Theron Elbe (Iron Mountain

Operations)

- Don Odean (Iron Mountain Operations)
- Gary Campbell (USGS)
- JoAnna Barrell (Colorado School of Mines)
- David Metge (USGS)
 - Deb Repert (USGS)