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Part 1: 
Field Experiments

• Summary of results from research project “Factors 
Controlling In Situ Uranium and Technetium 
Bioreduction at the NABIR Field Research Center”

• In situ testing demonstrates potential for bio- 
immobilization of uranium and technetium under 
wide range of initial geochemical conditions

• Reoxidation of immobilized uranium and 
technetium identified as important technical issue

• Single-well, push-pull tests demonstrated as a 
simple, rapid, low-cost site characterization 
technology
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Geochemical conditions at the FRC are 
highly spatially variable
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Field tests were conducted 
under a wide range of initial 

conditions in the shallow
(< 8 m ) subsurface

FRC Area 2
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pH 

NO3
- 

(mM) 
SO4

2- 
(mM) 

U(VI) 
(μM) 

Tc(VII) 
(pM) 

3.3-3.9 100-140 0-1 5-12 10000-15000 
5.2-5.6 90-100 0-1 5-12 10000-15000 
5.6-7.2 0-6 1-2 1-7 200-1000 
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Typical test design
• Collect 50-200 L site groundwater
• Amend with bromide tracer, +/- 

electron donor, +/-other 
amendments

• Inject by siphon
• Sample for 4-6 weeks after injection
• Plot concentration profiles
• Adjust for dilution
• Compute reaction rates
• 104 Area 1 tests 105 Area 2 tests
• Total = 209

Microbial activity was detected and rates 
were quantified using single-well, push- 

pull tests

Presenter�
Presentation Notes�
These results show that we can stimulate U and Tc reduction in a wide range of geochemical environments at the FRC.  The rates we compute could be used for preliminary modeling of an accelerated bioremediation strategy for the site.  The push-pull test could be used at any DOE site and I feel represents an important NABIR contribution to EM.

We will keep working away and will have more to report soon !�



5

 
Fe

(I
I)

 ( μ
M

)

0

250

500

750

1000

N
O

2-  (m
M

)

0
1
2
3
4
5

pH

5

6

7

8

9

Fe(II) 
NO2

- 

pH 

Time (hrs)
0 200 400 600 800

C
/C

o

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Br-

NO3
-

U
EtOH
Tc 

 

Microbial activity is electron donor limited; 
tests with no donor show only dilution losses
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Microbial activity rapidly (~ weeks) 
stimulated in all environments tested with 
the addition of exogenous electron donor
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After biostimulation, microbial activity was 
similar in all environments tested including 

those with low initial pH

Initial 
pH ~ 3.8
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In situ rates of microbial activity were 
determined for wide range of initial 

geochemical conditions
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After biostimulation, in situ rates of 
microbial activity were similar in all 

environments tested

Initial 
pH 

EtOH 
(mM/hr) 

NO3
- 

(mM/hr)
SO4

2- 
(mM/hr)

U(VI) 
(μM/hr) 

U(IV) 
(μM/hr) 

Tc(VII) 
(pM/hr) 

3.3 – 3.9 0.3 – 1.0 0.1 – 0.4 0 – 0.01 10-4 – 10-3 10-3 – 10-2 4 – 30 
5.2 – 5.6 0.3 – 4.0 0.3 – 4.0 0 – 0.01 10-4 – 10-3 10-3 – 10-2 10 – 150 
5.6 – 7.2 0.1 – 2.0 0.1 – 2.0 0 – 0.03 10-4 – 10-3 10-3 – 10-2 4 - 10 

 

In Situ Activity Measurements
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But in situ rates were very different from  
laboratory rates

Microcosm
(uM/hr)

In situ
(uM/hr)

Microcosm
(pM/hr)

In situ
(pM/hr)

135-690 0.001 - 0.04 (FRC)
0.001 - 0.002 (Rifle)
0.01 - 0.07 (Landfill)

105 – 106

Smaller

10,000 – 110,000 1 – 460 (FRC)

104 – 105

Smaller

U(VI) bioreduction Tc(VII) bioreduction

For more information see FRC Working Group Report “Rates and mechanisms of 
microbially mediated metal reduction”
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Enhanced microbial activity results in 
production of mineral precipitates, biomass, 

and gas

Titration of low pH groundwater

~ 2 g precipitates/L water
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Nitrogen gas 
production during 

active denitrification 
in FRC sediments



13

 

Fe
(I

I)
, M

n 
( μ

M
)

0

5000

10000

N
O

2-  (m
M

)

0

2

4

6

pH

5

6

7

8

9
Mn
Fe(II) 
NO2

- 

pH 

Time (hrs)
0 100 200 300 400 500 600

C
/C

o

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Br-

NO3
-

U
EtOH
Tc 

 

Addition of nitrate (and other oxidants) to 
previously reduced sediments reoxidizes 

and remobilizes U (but not Tc ?)

Addition of 100 
mM NO3

- to 
biostimulated 

sediments
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Mechanisms of nitrate-dependent microbial 
U(IV) oxidation were identified using 

microbial isolates and a range of mineral 
systems
NO3

-

CH2 O

CO2

NO2
- UO2

2+

UO2
?

Fe(III)

Fe(II)

~100 – 200 mM

~200 – 400 mM

~1 - 20 μM

~1 - 10 mM

~0.5 - 10 mM
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Form and amount of 
added substrates can 
be controlled to favor 

alternate 
bioimmobilization 

strategies
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Part 2: 
Biogeochemical modeling

• Results from research project “Stability of U(VI) 
and Tc(VII) Reducing Microbial Communities to 
Environmental Perturbation: Development and 
Testing of a Thermodynamic Network Model”

• Simple but powerful modeling approach was 
developed for predicting system response to donor 
additions or other perturbations

• Should prove useful for evaluating 
boimmobilization and related biotechnologies
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• Assume organisms with all required metabolic 
capabilities are present

• Define a synthetic microbial community as a 
collection of microbial groups, each with a defined 
metabolism and growth equation 

• Whichever groups can obtain the most energy in a 
particular ‘thermodynamic niche’ grow
– System specific combination of electron donors, 

electron acceptors, metabolic products, other 
geochemical variables

– Growth predictions directly coupled to 
geochemical environment

Thermodynamic approach for 
predicting microbial growth
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Growth equations

1 C-mol biomass = a(electron donor) + b(electron 
acceptor) + c(N source) + d(H2 O) + e(H+) + …

Solve for stoichiometric coefficients using charge, 
elemental, and free energy balances

MODELING APPROACH REQUIRES ONLY FOUR 
ADJUSTABLE PARAMETERS

(Gibbs energy dissipated per C-mol produced 
biomass for each growth substrate: ethanol, 

lactate, acetate, hydrogen)

1 mol cells (Example denitrifer group, YDx = 0.41) = 
6.1 CH3COO- +1 NH4+ 5.8 NO3

- + 3.7 H+ 

 -5.9 H2O -7.2 HCO3
- -2.9 N2(aq)  
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Microbial groups in current 
thermodynamic database

Acceptor Donor YDx Acceptor Donor YDx
Group Half-Reaction Half-Reaction Group Half-Reaction Half-Reaction

1 O2/CO2 Ethanol/CO2 0.56 22 MnO4
2-/Mn2+ Acetate/CO2 0.12

2 Acetate/CO2 0.41 23 Ethanol/Acetate 0.29
3 Lactate/CO2 0.56 24 Lactate/Acetate 0.06
4 Ethanol/Acetate 0.14 25 H2/H

+ 0.15
5 Lactate/Acetate 0.14 26 CO2/CH4 Acetate/CO2 0.02
6 H2/H

+ 0.13 27 H2/H
+ 0.02

7 CH4/CO2 0.55 28 H+/H2 Acetate/CO2 0.11
8 NO3

-/N2 Ethanol/CO2 0.27 29 Ethanol/Acetate 0.01
9 Acetate/CO2 0.41 30 Lactate/Acetate 0.06

10 Lactate/CO2 0.27 31 UO2
++/U4+ Acetate/CO2 0.22

11 Ethanol/Acetate 0.29 32 Ethanol/Acetate 0.19
12 Lactate/Acetate 0.06 33 H2/H

+ 0.12
13 H2/H

+ 0.17 34 CrO4
2-/Cr+++ Acetate/CO2 0.32

14 Fe3+/Fe2+ Acetate/CO2 0.12 35 Lactate/Acetate 0.06
15 Ethanol/Acetate 0.13 36 H2/H

+ 0.12
16 Lactate/Acetate 0.13 37 TCO4

-/TcO2+ Acetate/CO2 0.07
17 H2/H

+ 0.07 38 Ethanol/Acetate 0.06
18 SO4

2-/HS- Acetate/CO2 0.10 39 H2/H
+ 0.04

19 Ethanol/Acetate 0.04
20 Lactate/Acetate 0.04
21 H2/H

+ 0.07
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FRC Area 2 FRC Area 1 Old Rifle Hanford 100 H
(mM) (mM) (mM) (mM)

pH 6.4 3.3 7.3 7.8
O2 0.1 0.1 0.0 0.1

NO3
- 1.2 100.0 0.1 0.7

SO4
2- 0.8 0.4 6.4 0.7

Iron oxides (mmol/kg) 306 361 124 233
Mn oxides (mmol/kg) 48 22 10 3

Ca 3.5 18.0 5.3 1.5
Mg 1.1 8.3 5.4 3.0
Al - 12.0 - -

HCO3
- 0.1 0.0 0.1 0.1

U 4.9x10-3 1.4x10-3 5.25 x 10-4 -
V - - 1.54 x10-2 -
Tc 4.1x10-7 1.8x10-5 - -
Cr 1x10-3 - - 2.93 x10-2

Growth substrate Ethanol Ethanol Acetate Lactate (HRC)

Model tested in four environments
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Reaction path simulations
Growth substrate is added in small amounts and 

allowed to react until entire biogeochemical 
system is at minimum free energy = 

thermodynamic equilibrium

“Batch” (closed)
Simulations

“Flush” (open)
Simulations

Laboratory microcosms/
Field push-pull tests

Laboratory columns/
Intermediate-scale physical models

Field natural gradient tests

Ethanol, lactate, or acetate Ethanol, lactate, or acetate

Unreacted
pore fluid

Reacted
pore fluid
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Example batch simulation for 
FRC Area 2 (data from Mohanty et al.)
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PLFA Viable Biomass
= 8 x 108 cells/gram

Eubacterial 16S n RNA
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Iron/sulfate reducing 
bacteria
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Comparison of Model Prediction 
with Sediment Microbial Analyses
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Example flush 
simulation for 

Old Rifle 
• Microbial groups combined 

into major classes for 
plotting

• Many groups grow on 
microbially generated acetate 
and H2 (mM)

pH 7.3
O2 0.0
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- 0.1

SO4
2- 6.4
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V 1.54 x10-2
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Model predicts major 
biogeochemical 

processes observed 
during experiment

Reduction of soluble 
electron acceptors

Accumulation of Fe2+

Reduction of U(VI) 
and V(V)
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13C Acetate 
Experiment
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Example flush 
simulation for 
Hanford 100H 
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Conclusions
• In situ experiments have demonstrated 

potential for bio-reduction in diverse 
geochemical environments

• Important Technical issues have been 
identified
– Formation of mineral precipitates, biomass, and 

gas
– Low stability of reduced sediments and 

contaminants following introduction of oxidants
• Single-well, push-pull tests demonstrated to 

be inexpensive, rapid, and effective method 
for detecting and quantifying effects of 
chemical amendments on the subsurface
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Conclusions
• In situ experiments have demonstrated 

potential for bio-reduction in diverse 
geochemical environments

• Technical issues remain
– Effects of mineral precipitates, biomass, and gas 

on sediment hydraulic properties
– Stability of reduced sediments and contaminants 

following introduction of oxidants
• Single-well, push-pull tests demonstrated to 

be inexpensive, rapid, and effective method 
for detecting and quantifying effects of 
chemical amendments on subsurface
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Conclusions (cont.)
• A new thermodynamic modeling approach 

that couples microbial growth with 
geochemical reactions can make useful 
predictions for the effects of chemical 
additions on complex, highly contaminated 
environments
– Approach builds on well-known geochemical modeling 

techniques
– Only required parameters are the free-energy dissipation for 

microbial growth on each substrate (e.g., ethanol, lactate, 
acetate, and hydrogen)

– Fewer parameters makes it possible to model intact 
microbial communities in highly complex geochemical 
environments

• Initial porewater and sediment geochemistry 
data are only required inputs
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Conclusions (cont.)
• Model predictions are in qualitative agreement 

with geochemical observations from laboratory 
batch experiments, field push-pull tests, 
intermediate-scale column experiments, and 
field natural gradient tests at three ERSP 
research sites
– Consumption of electron acceptors (porewater and 

sediment)
– Production of reduced metals and metabolic 

products (e.g. Fe2+, Mn2+, H2 , CH4 , Acetate)
– Precipitation of sulfides, carbonates, and other 

minerals
– Reductive precipitation of U, Tc, V, and Cr
– Biomass increase (PLFA) and community 

composition (clone libraries)
– Major microbial groups (PLFA, qPCR, functional 

microarray)
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