Bio-immobilization of Radionuclides: Results of Field Experiments and Biogeochemical Modeling

> Dr. Jonathan ("Jack") Istok Oregon State University 541-737-8547 Jack.Istok@orst.edu

Part 1: Field Experiments

- Summary of results from research project *"Factors Controlling In Situ Uranium and Technetium Bioreduction at the NABIR Field Research Center"*
- *In situ* testing demonstrates potential for bioimmobilization of uranium and technetium under wide range of initial geochemical conditions
- Reoxidation of immobilized uranium and technetium identified as important technical issue
- Single-well, push-pull tests demonstrated as a simple, rapid, low-cost site characterization technology

Geochemical conditions at the FRC are highly spatially variable

FRC Area 2

Field tests were conducted under a wide range of initial conditions in the shallow (< 8 m) subsurface

Initial Conditions							
$NO_3^{-} SO_4^{2-} U(VI) Tc(VII)$							
pН	(mM)	(mM)	(µM)	(pM)			
3.3-3.9	100-140	0-1	5-12	10000-15000			
5.2-5.6	90-100	0-1	5-12	10000-15000			
5.6-7.2	0-6	1-2	1-7	200-1000			

Microbial activity was detected and rates were quantified using single-well, pushpull tests

- Typical test design
 - Collect 50-200 L site groundwater
 - Amend with bromide tracer, +/electron donor, +/-other amendments
 - Inject by siphon
 - Sample for 4-6 weeks after injection
 - Plot concentration profiles
 - Adjust for dilution
 - Compute reaction rates
 - 104 Area 1 tests 105 Area 2 tests
 - Total = 209

Microbial activity is electron donor limited; tests with no donor show only dilution losses

Microbial activity rapidly (~ weeks) stimulated in all environments tested with the addition of exogenous electron donor

6

After biostimulation, microbial activity was similar in all environments tested including those with low initial pH

Initial pH ~ 3.8

In situ rates of microbial activity were determined for wide range of initial geochemical conditions

Example dilution adjusted concentration profiles

8

After biostimulation, *in* situ rates of microbial activity were similar in all environments tested

In Situ Activity Measurements

Initial	EtOH	NO ₃	SO ₄ ²⁻	U(VI)	U(IV)	Tc(VII)
pН	(mM/hr)	(mM/hr)	(mM/hr)	(µM/hr)	(µM/hr)	(pM/hr)
3.3 – 3.9	0.3 – 1.0	0.1 - 0.4	0-0.01	$10^{-4} - 10^{-3}$	$10^{-3} - 10^{-2}$	4 – 30
5.2 - 5.6	0.3 – 4.0	0.3 – 4.0	0-0.01	$10^{-4} - 10^{-3}$	$10^{-3} - 10^{-2}$	10 – 150
5.6 - 7.2	0.1 – 2.0	0.1 - 2.0	0-0.03	$10^{-4} - 10^{-3}$	$10^{-3} - 10^{-2}$	4 - 10

But *in situ* rates were very different from laboratory rates

U((VI)	bioredu	uction
U		5101040	

Tc(VII) bioreduction

Microcosm (uM/hr)	<i>In situ</i> (uM/hr)	Microcosm (pM/hr)	<i>In situ</i> (pM/hr)
135-690	0.001 - 0.04 (FRC) 0.001 - 0.002 (Rifle) 0.01 - 0.07 (Landfill)	10,000 – 110,000	1 – 460 (FRC)
	10 ⁵ – 10 ⁶ Smaller		10 ⁴ – 10 ⁵ Smaller

For more information see FRC Working Group Report "Rates and mechanisms of microbially mediated metal reduction"

Enhanced microbial activity results in production of mineral precipitates, biomass, and gas

Titration of low pH groundwater \square Initial pH = 3.2 100000 ■ Final pH = 6.0 1000 Σĭ 10 0.1 NO3⁻ SO4²⁻ Ni U Ma Ca AI

~ 2 g precipitates/L water

Gibbsite, calcite precipitates

Gas Saturation (%)

Nitrogen gas production during active denitrification in FRC sediments

Horizontal Distance (cm)

Addition of nitrate (and other oxidants) to previously reduced sediments reoxidizes and remobilizes U (but not Tc ?)

Addition of 100 mM NO₃⁻ to biostimulated sediments Mechanisms of nitrate-dependent microbial U(IV) oxidation were identified using microbial isolates and a range of mineral systems

Form and amount of added substrates can be controlled to favor alternate bioimmobilization strategies

Part 2: Biogeochemical modeling

- Results from research project *"Stability of U(VI)* and *Tc(VII)* Reducing Microbial Communities to Environmental Perturbation: Development and Testing of a Thermodynamic Network Model"
- Simple but powerful modeling approach was developed for predicting system response to donor additions or other perturbations
- Should prove useful for evaluating boimmobilization and related biotechnologies

Thermodynamic approach for predicting microbial growth

- Assume organisms with all required metabolic capabilities are present
- Define a synthetic microbial community as a collection of microbial groups, each with a defined metabolism and growth equation
- Whichever groups can obtain the most energy in a particular 'thermodynamic niche' grow
 - System specific combination of electron donors, electron acceptors, metabolic products, other geochemical variables
 - Growth predictions directly coupled to geochemical environment

Growth equations

1 C-mol biomass = a(electron donor) + b(electron acceptor) + c(N source) + d(H₂O) + e(H⁺) + ...

Solve for stoichiometric coefficients using charge, elemental, and free energy balances

1 mol cells (Example denitrifer group, YDx = 0.41) = 6.1 $CH_3COO^- + 1 NH_4 + 5.8 NO_3^- + 3.7 H^+$ -5.9 H_2O -7.2 $HCO_3^- -2.9 N_2(aq)$

MODELING APPROACH REQUIRES ONLY FOUR ADJUSTABLE PARAMETERS

(Gibbs energy dissipated per C-mol produced biomass for each growth substrate: ethanol, lactate, acetate, hydrogen)

Microbial groups in current thermodynamic database

	Acceptor	Donor	YDx
Group	Half-Reaction	Half-Reaction	
1	O ₂ /CO ₂	Ethanol/CO ₂	0.56
2		Acetate/CO ₂	0.41
3		Lactate/CO ₂	0.56
4		Ethanol/Acetate	0.14
5		Lactate/Acetate	0.14
6		H_2/H^+	0.13
7		CH ₄ /CO ₂	0.55
8	NO ₃ ⁻ /N ₂	Ethanol/CO ₂	0.27
9		Acetate/CO ₂	0.41
10		Lactate/CO ₂	
11		Ethanol/Acetate	0.29
12		Lactate/Acetate	0.06
13		H_2/H^+	0.17
14	Fe ³⁺ /Fe ²⁺	Acetate/CO ₂	0.12
15		Ethanol/Acetate	0.13
16		Lactate/Acetate	0.13
17		H_2/H^+	0.07
18	SO4 ²⁻ /HS ⁻	Acetate/CO ₂	0.10
19		Ethanol/Acetate	0.04
20		Lactate/Acetate	0.04
21		H_2/H^+	0.07

	Acceptor	Donor	YDx
Group	Half-Reaction	Half-Reaction	
22	MnO ₄ ²⁻ /Mn ²⁺	Acetate/CO ₂	0.12
23		Ethanol/Acetate	0.29
24		Lactate/Acetate	0.06
25		H_2/H^+	0.15
26	CO ₂ /CH ₄	Acetate/CO ₂	0.02
27		H_2/H^+	0.02
28	H^+/H_2	Acetate/CO ₂	0.11
29		Ethanol/Acetate	0.01
30		Lactate/Acetate	0.06
31	UO2 ⁺⁺ /U ⁴⁺	Acetate/CO ₂	0.22
32		Ethanol/Acetate	0.19
33		H_2/H^+	0.12
34	CrO ₄ ²⁻ /Cr ⁺⁺⁺	Acetate/CO ₂	0.32
35		Lactate/Acetate	0.06
36		H_2/H^+	0.12
37	TCO ₄ ⁻ /TcO ²⁺	Acetate/CO ₂	0.07
38		Ethanol/Acetate	0.06
39		H_2/H^+	0.04

Model tested in four environments

	FRC Area 2	FRC Area 1	Old Rifle	Hanford 100 H
	(mM)	(mM)	(mM)	(mM)
рН	6.4	3.3	7.3	7.8
O ₂	0.1	0.1	0.0	0.1
NO ₃ ⁻	1.2	100.0	0.1	0.7
SO ₄ ²⁻	0.8	0.4	6.4	0.7
Iron oxides (mmol/kg)	306	361	124	233
Mn oxides (mmol/kg)	48	22	10	3
Са	3.5	18.0	5.3	1.5
Mg	1.1	8.3	5.4	3.0
AI	-	12.0	-	-
HCO ₃ ⁻	0.1	0.0	0.1	0.1
U	4.9x10 ⁻³	1.4x10 ⁻³	5.25 x 10 ⁻⁴	-
V	-	-	1.54 x10 ⁻²	-
Тс	4.1x10 ⁻⁷	1.8x10 ⁻⁵	-	-
Cr	1x10 ⁻³	-	-	2.93 x10 ⁻²

Growth substrate

Ethanol Ethanol

anol A

Acetate La

Lactate (HRC)

Reaction path simulations

Growth substrate is added in small amounts and allowed to react until entire biogeochemical system is at minimum free energy = thermodynamic equilibrium

"Batch" (closed) Simulations "Flush" (open) Simulations

Example batch simulation for FRC Area 2 (data from Mohanty et al.)

Predicted

Observed

Comparison of Model Prediction with Sediment Microbial Analyses

Example flush simulation fo 24 month mesocolumn experiment Growth stimulated with ethanol Complete mass balance

Sediment analyses (n = 8)PLFA Viable Biomass $= 8 \times 10^8$ cells/gram **Eubacterial 16S n RNA** = 1. x 10⁹ copies/gram nirS + nirK = 7 x 10⁸ copies/gram **Methanogens** = 1 x 10⁶ copies/gram

Model predicts major biogeochemical processes observed during experiment

Reduction of soluble electron acceptors Accumulation of Fe²⁺, Mn²⁺, HS⁻, CH₄ Reduction of U(VI) and Tc(VII)

Example flush simulation for Old Rifle

- Microbial groups combined into major classes for plotting
- Many groups grow on microbially generated acetate and H₂

Model predicts major biogeochemical processes observed during experiment

Reduction of soluble electron acceptors Accumulation of Fe²⁺ Reduction of U(VI) and V(V)

Example flush simulation for Hanford 100H

Model predicts major biogeochemical processes observed during experiment

Reduction of soluble electron acceptors Accumulation of Fe²⁺, CH₄ Reduction of Cr(VI)

An interesting observation...

Conclusions

- In situ experiments have demonstrated potential for bio-reduction in diverse geochemical environments
- Important Technical issues have been identified
 - Formation of mineral precipitates, biomass, and gas
 - Low stability of reduced sediments and contaminants following introduction of oxidants
- Single-well, push-pull tests demonstrated to be inexpensive, rapid, and effective method for detecting and quantifying effects of chemical amendments on the subsurface ³⁴

Conclusions

- In situ experiments have demonstrated potential for bio-reduction in diverse geochemical environments
- Technical issues remain
 - Effects of mineral precipitates, biomass, and gas on sediment hydraulic properties
 - Stability of reduced sediments and contaminants following introduction of oxidants
- Single-well, push-pull tests demonstrated to be inexpensive, rapid, and effective method for detecting and quantifying effects of chemical amendments on subsurface

Conclusions (cont.)

- A new thermodynamic modeling approach that couples microbial growth with geochemical reactions can make useful predictions for the effects of chemical additions on complex, highly contaminated environments
 - Approach builds on well-known geochemical modeling techniques
 - Only required parameters are the free-energy dissipation for microbial growth on each substrate (e.g., ethanol, lactate, acetate, and hydrogen)
 - Fewer parameters makes it possible to model intact microbial communities in highly complex geochemical environments
- Initial porewater and sediment geochemistry data are only required inputs

Conclusions (cont.)

- Model predictions are in *qualitative* agreement with geochemical observations from laboratory batch experiments, field push-pull tests, intermediate-scale column experiments, and field natural gradient tests at three ERSP research sites
 - Consumption of electron acceptors (porewater and sediment)
 - Production of reduced metals and metabolic products (e.g. Fe²⁺, Mn²⁺, H₂, CH₄, Acetate)
 - Precipitation of sulfides, carbonates, and other minerals
 - Reductive precipitation of U, Tc, V, and Cr
 - Biomass increase (PLFA) and community composition (clone libraries)
 - Major microbial groups (PLFA, qPCR, functional microarray)
 37