IMPROVED INVESTIGATION METHODS TO DISTINGUISH VAPOR INTRUSION FROM INDOOR SOURCES OF VOCS

Thomas E. McHugh GSI Environmental, Inc.

FRTR General Meeting

November 10, 2009

PROBLEM: INDOOR SOURCES

- At vapor intrusion site, testing of indoor air is most direct way to identify VI impacts.
- Indoor sources of VOCs are ubiquitous: cleaners, glues, plastic, etc
- Detection of VOCs in indoor air does not necessarily indicate vapor intrusion.

Key Point:

Critical need for reliable methods to distinguish between vapor intrusion and indoor sources of VOCs.

2004 Background vs. USEPA Risk-Based Limits

KEY
POINT:Background indoor and outdoor air
concentrations commonly exceed risk-based limits
for indoor air.

1) Background concentrations from Sexton et al. 2004 ES&T 38(2); 423-430.

2) USEPA Master Screening Values Table, September 2008

Bkgrnd

Air

Consumer Products Containing PCE

Product	PCE Concentration
ARAMCO Art and Crafts Goop	Not Specified
Aleenes Patio & Garden Adhesive	70%
Gumout Brake Cleaner	50 - 90%
Liquid Wrench Lubricant w/ Teflon	65 - 80%
Plumbers Goop Adhesive	67.5%
Hagerty Silversmith Spray Polish	30.5%
Champion Spot it Gone	20 - 25%

KEY Wide variety of consumer products still contain high *POINT:* concentrations of PCE.

New Indoor Source of 1,2-DCA

KEY
POINT:Indoor concentration of 1,2-DCA increasing over
time. New indoor source = molded plastic
(e.g., toys, Christmas decorations).

Note:1)1,2-DCA = 1,2-dichloroethane2)Indoor 1,2-DCA data from residential area in Colorado.
Data provided by Jeff Kurtz, Envirogroup (jkurtz@envirogroup.com)

Reference: Doucette, Hall, and Gorder, 2010, "Emission of 1,2-dichloroethane from holiday decorations as a source of indoor air contamination", accepted for publication in GWMR.

SOLUTION: TEST METHODS

POTENTIAL METHODS TO DISTINGUISH BETWEEN VAPOR INTRUSION AND INDOOR SOURCES OF VOCS

very leaky buildings

Real-time	
On-site	
Analysis	

Building Pressure Control

CSIA / Fingerprinting Completed "Proof of Concept" study
 Additional funding for development and validation

Current ESTCP Project ER-0707

May not be suitable in very large or

GC/MS or USEPA TAGA unit

Used successfully by EPA and Hill AFB

Requires expensive equipment: Hapsite

KEY POINT: Multiple methods available to distinguish between vapor intrusion and indoor sources.

SOLUTION: TEST METHODS

POTENTIAL METHODS TO DISTINGUISH BETWEEN VAPOR INTRUSION AND INDOOR SOURCES OF VOCS

Real-time On-site Analysis	 Used successfully by EPA and Hill AFB Requires expensive equipment: Hapsite GC/MS or USEPA TAGA unit 	
Building Pressure Control	 Current ESTCP Project ER-0707 May not be suitable in very large or very leaky buildings 	
CSIA / Fingerprinting	 Completed "Proof of Concept" study Additional funding for development and validation 	
KEY POINT: Multiple methods available to distinguish between vapor intrusion and indoor sources.		

On-Site Analysis: Overview

KEY POINT: Conduct initial survey of buildings
 Follow-up in area of highest concentration to

identify source.

ON-SITE ANALYSIS: OPTIONS

USEPA TAGA Unit

HAPSITE Portable GC/MS

Performance

Continuous analysis with 1 – 5 ppbv quantitation limits (wow!)

<1 ppbv detection limit for grab samples

Less sensitive in survey model (i.e., continuous reading)

Mobile lab GC/MS <1 to 10 ppbv detection limit for grab samples

Need alternate instrument for survey

TAGA Unit

SOLUTION: TEST METHODS

POTENTIAL METHODS TO DISTINGUISH BETWEEN VAPOR INTRUSION AND INDOOR SOURCES OF VOCS

Real-time	
On-site	
Analysis	

Building

Pressure

Control

- Used successfully by EPA and Hill AFB
 - Requires expensive equipment: Hapsite GC/MS or USEPA TAGA unit
- Current ESTCP Project ER-0707
 - May not be suitable in very large or very leaky buildings

CSIA / Fingerprinting Completed "Proof of Concept" study
 Additional funding for development and validation

Key Point: Multiple methods available to distinguish between vapor intrusion and indoor sources.

PRESSURE CONTROL: OVERVIEW

Concept:

1) Use controlled <u>NEGATIVE</u> building pressure to <u>MAXIMIZE</u> vapor intrusion.

2) Use controlled <u>POSITIVE</u> building pressure to <u>TURN OFF</u> vapor intrusion.

PRESSURE CONTROL: VALIDATION STUDY TESTING PROGRAM

Matrix	Number of Samples	Analyte	Location
Indoor air	6	Radon, SF6, VOCs	Indoors, 3 locations (negative pressure and positive pressure events)
Sub slab vapor	6	Radon, SF6,VOCs	Sub-slab, 3 locations (negative pressure and positive pressure events)
Ambient air	1	Radon, SF6, VOCs	Outdoors, upgradient, once at each location
Pressure Gradient	NA	Differential pressure between indoor/outdoor and indoor/sub slab space	Continuous sampling at various sample points during positive and negative pressure conditions

TIER 3: FIELD PROGRAM

TIER 3: FIELD PROGRAM

TRAVIS AFB: BUILDING PRESSURE

TINKER AFB: BUILDING PRESSURE

EFFECT OF BUILDING PRESSURE ON INDOOR RADON CONCENTRATION

TRAVIS AFB BUILDING 828

Key Point: Control of building pressure resulted in control of radon vapor intrusion.

JACKSONVILLE NAS BUILDING 123

TRAVIS AFB: INDOOR VOC CONC.

TRAVIS AFB: INDOOR VOC CONC.

Concentration in Outdoor Air

SOLUTION: TEST METHODS

POTENTIAL METHODS TO DISTINGUISH BETWEEN VAPOR INTRUSION AND INDOOR SOURCES OF VOCS

Real-time On-site Analysis	 Used successfully by EPA and Hill AFB Requires expensive equipment: Hapsite GC/MS or USEPA TAGA unit
Building Pressure Control	 Current ESTCP Project ER-0707 May not be suitable in very large or very leaky buildings
CSIA / Fingerprinting	 Completed "Proof of Concept" study Additional funding for development and validation
Key Mu Point: be _so	Iltiple methods available to distinguish tween vapor intrusion and indoor urces.

TECHNOLOGY DESCRIPTION

What are Stable Isotopes?

- Isotopes have the same number of protons identical atomic number
- Isotopes have different number of neutrons different atomic mass
- Stable isotopes do not undergo radioactive decay tritium is not a stable isotope

TECHNOLOGY DESCRIPTION

Stable Isotope Fractionation

Kinetic Effect (irreversible)

Equilibrium Effect

(reversible)

Evaporation

Biodegradation of PCE

Differences in isotope ratios between samples can indicate different sources.

TECHNOLOGY DESCRIPTION

23

Isotope Differences: Indoor vs. Subsurface Sources

<u>Manufacturing</u>: Consumer products vs. industrial chemicals.

<u>Biotransformation</u>: Kinetic isotope effects likely in subsurface sources but not indoor sources.

CSIA: PROOF OF CONCEPT

Small Study at Hill AFB: Can this work?

Testing of Indoor TCE Sources

FUTURE EFFORTS

Validation of Vapor Intrusion Tools

- AFCEE BAA 2009 Award
- Application of CSIA, Molecular Biological Tools, and other innovative analyses to vapor intrusion
- Broader scope (indoors and vadose zone)
- Work to be conducted at Hill AFB

2010 Start ESTCP Project?

- Develop and validate protocol for application of CSIA to distinguish between vapor intrusion and indoor sources of VOCs
- Short listed for 2010 ESTCP funding

Petroleum Fingerprinting

- Use hydrocarbon fingerprinting to distinguish between vapor intrusion and indoor sources of petroleum hydrocarbons
- Industry funding

RECMMENDATIONS

POTENTIAL METHODS TO DISTINGUISH BETWEEN VAPOR INTRUSION AND INDOOR SOURCES OF VOCS

ACKNOWLEDGEMENTS

Work funded by:

The Environmental Security Technology Certification Program (ESTCP) Project ER-0707

AFCEE BAA Contract 09-C-8016

Hill AFB

BP America

Special Thanks to:

Danny Bailey & Roberto Landazuri, GSI Sam Brock & Erica Becvar, AFCEE Kyle Gorder, Hill AFB Andrea Leeson, SERDP/ESTCP ESTCP Administrators and Staff ESTCP Peer Reviewers DoD Facility Project Managers