The Application of In Situ Chemical Oxidation (ISCO) in Fractured Bedrock using Geophysical Aided Design

> Presented by Susanne Borchert Annual FRTR Meeting, Nov. 9 2010

Acknowledgements:

- Craig Sprinkle, Amanda Struse, and Steve Glennie - CH2M HILL
- Fred Paillet at Univ. of Arkansas (formerly USGS)

Presentation Overview

- Present case studies highlighting the bedrock characterization elements used in ISCO designs
- Show how results were used to
 - a) determine oxidant quantity (dosage)
 - b) assess ISCO delivery approach
- Discuss lessons learned

Background of Maryland Site

- Piedmont bedrock
 – garnet-bearing schist and quartzite to 150 feet below ground surface (ft bgs)
- Contaminants (µg/L): TCE =4,400, cis-DCE =1,100, VC = 81
- Groundwater table near source is in bedrock (56 ft bgs), extends into saprolite in downgradient direction (8 ft bgs) near creek to east
- i_h= 0.1 to 0.4 ft/ft; complex i_v mostly downward near source, slightly upward by creek
- k in bedrock 0.36 ft/day; in saprolite 0.14 to 1.01 ft/day

Cross-Section

6

MARYLAND SITE

Field Tests Conducted in Bedrock

- Wells sampled for VOCs including using isolated profiling with packers
- Hydraulic connectivity testing in open boreholes
- Borehole caliper, optical televiewer, heat-pulse flow meter and fluid resistivity
 - Borehole fracture aperture were analyzed according to the Paillet ranking method due to their importance for the ISCO design – as they determine the quantity and distribution of groundwater in the bedrock matrix

Well ID	Total # of	Paillet Ranking					
	Fractures	1	2	3	4	5 >	Increase in
GW207	13	12	1	-	-	-	racture opening
GW208	5	5	-	-	-	-	
GW209	7	7	-	-	-	-	

(Note – Total oxidant demand [TOD] tests not conducted on bedrock sample/core. Bedrock oxidant demand is assumed to be negligible since contact in fractures is less than in unconsolidated matrix)

Hydraulic Connectivity Test Result

Boreholes pairs showing hydraulic connection:

- 209-203
- 206-207
- 207-208

ISCO Oxidant Demand Design

Initial ISCO design (inject and drift approach):

- Groundwater volume requiring treatment
 - Average width of fracture openings per linear borehole foot
 - Areal extent to treat
- Only used stoichiometric demand of VOCs for dosage
 - assume oxidant demand of bedrock is negligible
 - safety factor of 3 to increase longevity/persistence of permanganate
- 120 to 480 gallons of 5% by weight Na-permanganate per injection well;
- 2,480 total gallons oxidant solution and 1,360 pounds permanganate
 - Individualized per IW depending on inches of open fractures and treatment area (pore volume)

Optimization after installed and characterized 15 injection boreholes:

- 40 to 125 gal of 8% by weight Na-permanganate , with 70 to 200 gallons chase water
- 1,365 total gallons oxidant plus 2,220 gallons chase water and 1,100 pounds permanganate (average 3 gallons per minute injection)

(reduced permanganate solution to <60% of fractured bedrock pore volume)

Effectiveness Overview

- Permanganate longevity less than 1 year except one well
- Overall areal extent of plume decreased
- TCE decreased initially, rebounded slightly after second year
- cis-DCE and VC decreased slightly
- Configuration of VOC concentration contours showed spotty reductions
- Lesson learned: Would be beneficial to test connectivity of injection wells to monitoring wells prior to application

CH2MHILL 11

Lithology Model

GEORGIA SITE

Field Characterization Methods

- Test borings
 - Soil and rock cores (field descriptions)
 - Field and lab tests (Sudan IV dye, FLUTe[™] liners, chemical analyses, rock quality designation – RQD)
- Wells
 - Water level measurements to predict horizontal and vertical flow
 - Water samples to define horizontal and vertical plume extent
 - Borehole logs (caliper, acoustic and video televiewer, heat pulse flow meter, electrical resistivity, gamma)
 - Aquifer tests

Bedrock is biotite gneiss, micaschist, and granite

GEORGIA SITE

CH2MHILL 14

Borehole Logging Results

- Bedrock had no water bearing fractures below 250 ft bgs
- Nearly all water conducting fractures parallel to rock fabric or foliation
 - One water-producing fracture per 100 ft (low count!)
 - Poor vertical interconnection of fractures (pulse heat flow meter, substantial heads between fractures in same borehole)
- Fracture porosity <0.01% of bedrock

Conclusion: although high TCE concentrations in fractures (>100,000 μg/L TCE) migrating in few, and horizontally isolated fractures - not much TCE mass in bedrock (probably <5%)

ISCO Design and Results

Strategy: address zones with highest TCE mass, use technologies that will show results in <3 years

- ISCO in PWR within "source area", to also treat TCE in fractured bedrock
- PWR and bedrock assumed to have no oxidant demand
- Used K-permanganate (more cost effective) and mixed in 4% solution
- Pilot test showed anisotropy in injection radius; estimated volume of PWR
- Injected about 16,000 gallons in 32 injection wells (one pore volume)

Implementation started in late 2008. Results to date:

- Eliminated 100,000 μg/L plume in "source area" bedrock
- PWR 10,000 μg/L plume reduced by 68%
- PWR 100,000 μg/L plume reduced by 80%

CH2MHILL

16

Background of West Virginia Site

- Site was research and production facility for solid propellants
- Approximately 1,000 pounds per month of TCE were disposed in three unlined pits between 1970 and 1978
- Fill and alluvium underlain by fractured shale bedrock
- Natural groundwater flow is toward NE (to North Branch Potomac River)
- Current groundwater extraction system captures contaminated groundwater before entering river
- Pilot study performed in solvent disposal pit area of Site 1 to evaluate ISCO's ability to reduce VOC mass in fractured bedrock aquifer

Plan View

ILL 18

Site Characterization

- Limited down-hole geophysics on monitoring and injection wells (caliper log, fluid temperature log, fluid conductivity log)
- FLUTe[™] liners to verify the presence and location of DNAPL in fractures
- Collect and analyze borehole groundwater samples using low flow techniques (vs. packers)

Geophysical Results

- Caliper log
- Fluid temperature log
- Fluid conductivity log

 Shale has extensive horizontal fractures that are also pretty well connected vertically; relatively high bedrock porosity

ISCO Pilot Study Design

- Goal: TCE mass reduction, flux reduction downgradient
- Oxidant selected: potassium permanganate (KMnO₄)
 - Wanted to avoid oxidants that need catalyst, mixing in situ
- 3,200 lbs of K-permanganate mixed with water, 9,500 gallons 3% by weight solution
- 6,300 gal gravity fed at 9 to 12 gpm, 3,200 gallons injected with low pressure at 12 to 14 gpm
 - Observed almost immediate impact on surrounding wells
 - Displacement not critical issue during pilot study: small treatment area, high porosity, groundwater extraction system

WEST VIRGINIA SITE

Pilot Study Results

 Downgradient extraction well had K-permanganate shortly after injection; was turned off for pilot study duration

<u>Sampling</u> <u>Event</u>	<u>Maximum</u> <u>TCE</u>	<u>Average</u> <u>TCE</u>
Baseline	110,000	28,500
3 Week	100	12
6 Week	190	45
3 Month	14,000	4,100
5 Month	13,000	4,500

Pilot Study Conclusions

- Total VOCs decreased 84% in the bedrock aquifer
- Based on vertical ORP trends in boreholes, permanganate evenly distributed
- Rebound observed, likely caused by
 - Migration of alluvium and upgradient dissolved phase VOCs
 - Continued dissolution of DNAPL
- Higher dose permanganate may persist longer and oxidize more mass before rebound occurs
- ISCO may be more effective if the extraction system shutdown to increase permanganate residence time

Lessons Learned

- Characterization tests that end up most useful at any given site are unpredictable, need multiple lines of evidence to shape conceptual site model for ISCO design and delivery
 - Televiewer and hydraulic connectivity tests in MD
 - Caliper, televiewer, and heat pulse flow meter in GA
 - FLUTe[™] liners, caliper, fluid temperature and conductivity in WV
- To mitigate plume displacement by oxidant solution, use small injection volumes (fraction of estimated pore volume).
 - Don't underestimate transport distance of low volume of injectant in fractures/lineaments – monitor potential surfacing
- During ISCO injection in open borehole extending beyond treatment zone, consider placing packer below lowest impacted, water-bearing fracture
 - Enhances use of oxidant to destroy contaminants in open fractures

