

USGS can help develop three-dimensional subsurface conceptual models and evaluate remedy effectiveness in fractured-rock aquifers through:

Geologic framework development

• Surface geophysics to delineate geologic heterogeneity

• Borehole geophysics to identify permeable fractures • Straddle packer deployment for hydraulic testing and geochemical sampling

 Aquifer testing to identify site-scale hydraulic properties and connections

 Groundwater flow modeling to estimate flow directions and rates

• Tracer testing to identify transport properties and processes

• Measurement of contaminants in the rock matrix

Monitoring to assess biodegradation and long-term water quality

 Empirical calculations and reactive transport modeling to understand processes controlling remediation and to estimate contaminant mass removal

British Columbia			
Ministry of	REPORT ON: Fractured Bedrock Field Methods and		
Environmont	Analytical Tools		
	Volume I : Main Report		
Golder Assoc.			
Ltd., 2010	Submitted to: The Ministry of Environment April 2010		
	Submitted by: Science Advisory Board For Contaminated Sites in British Columbia		
≊USGS	Prepared under contract by Golder Associates Ltd. Burnaby, British Columbia		

	Desk Study	Surface-Based Characterization	Single Well Characterisation	Monitoring and Completion	Multi-Well Characterisation
Geology	Case histories and analog sites Uneament Interpretation of existing air photo and Lidar data	Map fractures in rock exposures (preferably quantitative)	Optical televiewer logging Core fracture description Acoustic televiewer logging		Correlation of key fractures between wells
Geophysics	Existing Airborne Geophysics	Ground penetrating radar Resistivity sounding Seismic refraction/reflection	Temperature, fluid conductivity Single hole radar reflection		Cross hole tomograp
Hydraulic Properties		Fracture mapping for aperture estimation and indicators of active flow, Assessment of fracture weathering from surface mapping.			
	<u>Case histories and</u> <u>analog sites</u>		Flow logging (pumping) Single hole transient tests	Monitor heads for <u>Responses during</u> <u>drilling and natural</u> <u>perturbations</u>	<u>Transient interferens</u> <u>tests</u> <u>Monitor head</u> <u>perturbations</u>
Hydrodynamics	Recharge and discharge locations Head data from existing wells	Measure heads in existing wells	Ambient flow logging or head measurements during detailed packer testing	<u>Monitor hydraulic</u> <u>heads</u>	Monitor hydraulic heads
Transport Properties	Case histories and analog sites		Porosity measurements on cores	Plume mapping	Tracer tests
Water Chemistry and Contaminant	Case histories and analog sites	Sample surface-water discharges	Plume mapping Checking core for	Sampling from multipoint	Sample for water chemistry changes

Conclusions

- Hydrogeologic characterization at the NAWC was critical to achieving effective bioaugmentation of the rock fractures:
 - Designing strategy for injection of bioaugmentation amendments.
 - Determining importance of monitoring at intermediate wells.
 - Interpreting bioaugmentation results (ongoing).

USGS

