Federal Remediation Technology Roundtable

Demonstration and Validation of the Fractured Rock Passive Flux Meter

ESTCP Project ER0831

Kirk Hatfield University of Florida

November 9, 2010

Project Team

University of Florida:

Michael Annable, Harald Klammler, Mark Newman and Jaehyun Cho

University of Guelph:

Beth Parker, John Cherry, and Ryan Kroeker

RAS Incorporated:

William Pedler

Technical Objectives

- The objective of this project is to demonstrate and validate the fractured rock passive flux meter (FRPFM) as an innovative closed-hole technology. Specific project objectives are:
 - Demonstrate and validate an innovative technology for the direct in situ measurement of cumulative water and contaminant fluxes in fractured media
 - 2. Formulate and demonstrate methodologies for interpreting contaminant discharge from point-wise measurements of cumulative contaminant flux in fractured rock

Technology Description

Unfractured Bedrock

Packer minimizes vertical cross-flow between fractures

Technology Description

- The FRPFM is essentially an inflatable packer or impermeable flexible liner that holds a reactive permeable fabric against the wall of the borehole and to any water-filled fractures intersected by the borehole.
- Reactive fabrics capture target contaminants and release non-toxic resident tracers (e.g., visible dyes and branch alcohols).
- Tracer loss is proportional to <u>ambient</u> fracture flow.
- Leached visible tracers reveal location and orientation of active fractures and flow direction.
- Contaminant mass captured is proportional to <u>ambient</u> contaminant flux.

Dimensions

Borehole ID = 3.8 in (9.652 cm) Nominal 4 in borehole

Un-Inflated Dimensions Shield packer OD = 3.5 in Shield OD = 3.5 in Packer OD = 3.3 in Core OD = 3.2 in (with sorbent and sock)

Note: When inflated all dimensions match borehole ID

Selection of Sorbents and Resident Tracers Suite of Non-toxic Branched Alcohols

Batch Tracer Sorption Isotherms on Felt 1300

Resident Tracer Results

- Water Flux Measurements can be interpreted from resident tracer losses.
- Tracer retardation factors and elution functions are sensitive to the nonlinear sorption isotherms.
- Consistent use of tracers and sorbents is critical!

Elution curves for varying thickness of sorbent material (Klammler, 2004).

Laboratory Fracture Simulator

Fracture Dimensions:

- Horizontal
- Aperture = 500 µm
- Width = 26 cm
- Length = 53 cm
- Conductivity ~0.7 cm/s

Borehole:

• Diameter 10.16 cm

Flow Convergence:

• Maximum = 1.76

FRPFM Performance in the Laboratory

Visual Tracer Reveals Fracture Location and Orientation and Flow Direction

FRPFM Performance

Large Aquifer Box (High contrast flow zones)

Box Dimensions (length x width x height) 2.0 x 0.5 x 1.3 m

Screened Wells (4-inch diameter PVC)

Alternating Sand and Gravel Layers

FRPFM Results in Aquifer Box

Two Field Sites

Guelph Tool Site, Ontario, Canada

Former Naval Air Warfare Center (NAWC), West Trenton, NJ

Site Description

Guelph Tool Site, Ontario, Canada

- Guelph Tool Inc. facility
- Site is well characterized
- Fractured Dolostone
- High bulk conductivity
- Medium to large apertures
- TCE
- Natural gradient conditions
- Excellent infrastructure
- Leverage the FRFRF

Test Design Guelph Tool Site, Ontario, Canada

Project will:

- 1. Validate FRPFM performance in one or two fractured rock holes or sections of holes located in a chlorinated solvent plume
- 2. Combine existing site data with new data generated from this study to explore potential costsavings derived from using the FRPFM in conjunction with other borehole technologies

MW 26 (first 12 meters)

Zone	Top Depth (mbTOC)	Bot Depth (mbTOC)	T (m2/s)	Number of ATV Fractures in	ATV Fractures Equivilent
	10 5	40.04			20 (µm)
1	40.5	43.04	1.59E-05	4	185
2	39	40.5	1.78E-06	5	82
3	37.5	39	7.81E-06	4	151
3	37.5	39	1.29E-06	4	79
4	36	37.5	4.47E-07	4	58
5	34.5	36	1.97E-06	5	89
6	33	34.5	1.58E-06	6	78
7	31.5	33	2.98E-06	5	102
8	30	31.5	2.62E-06	1	159
9	28.5	30	4.47E-05	4	258

Test Design

Performance Tests				
Target Measurement	FRPFM Technology	Competing Technology		
Water Flux	Resident Tracers	Borehole Dilution		
Contaminant Flux	Contaminant Sorption	Modified Borehole Dilution		
Detection of Flowing Fractures	Visual Tracer	Hydrophysical Logging (open hole), Temperature Logging (closed hole)		
Flow Direction	Visual Tracer	Scanning Colloidal Borescope		
Fracture Orientation	Visual Tracer	Optical and Acoustic Televiewer		

Field-Scale Prototype Test: Deployment

Well MW-26: Nominal 4-inch open borehole.

MW-26 Target Zone for Deployment

Selected zone for location of FRPFM based upon ATV, Tadpoles, HPL, HRTP, and Caliper data **FRPFM Measured Water Fluxes:**

- 9.6 cm/d average specific discharge
- 36-180 m/d fracture flow

Visual indication of discrete flow intercepting FRPFM (MW-26 at 13.87 m below TOC) Sample zone 88-98cm

Black marks provide frame of reference.

UV light

MW-26 Target Zone for Deployment (Upper high permeability zone)

Visual indication of tracer washout (under UV light) from high permeability zone in upper portion of MW-26

Visual indication of discrete flow intercepting FRPFM MW-25 at 26ft bgs (under UV light)

Physical Setup: Transect, Borehole(s), Traces, Intersections

Problems:

(1)Estimate discharge Q through traces in transect from measured fluxes q_i at boreholetrace intersections

(2)Quantify estimation uncertainty

Parameters Involved

- Intersections: number N_i, orientations θ_i
- Fluxes q_i* (at each intersection perpendicular to transect): flow per unit trace length = velocity times aperture
- \rightarrow As $\mathbf{q_i}^*$ are measured directly, fracture aperture, roughness and gradients are not required.
- Transect: width W, height H, number of wells
- **Traces:** number N_t (in transect) or areal fracture density λ_A , lengths I_t , mean flux q_t , orientations θ_t

True discharge (in L³/T):

Discharge Estimation at Transects

- Total number of fractures N_t , Areal fracture density λ_A and facture length I are not easily determined from borehole data
- However fracture frequency λ_L (# of fractures intersected per unit length of borehole) is directly measured at each borehole
- Fracture frequency is a measure of the product of fracture density and length (Robertson, 1970; Baecher et al., 1977):

$$\lambda_L / \overline{\cos \theta} = \lambda_A \overline{l}$$

Ground Water Discharge Estimation

• For each borehole:

$$Q = \left(\sum \left(q \frac{\lambda_L}{\cos \theta}\right)\right) \text{(transect area)}$$

Q : groundwater discharge estimated at the borehole L^3/T]

q : FRPFM groundwater flux measurement [L²/T]

 λ_L /cos θ : measured fracture frequency corrected for orientation bias

 $\boldsymbol{\theta}$: orientation angle between joint normal and borehole

Contaminant Discharge Estimation

• At each borehole:

$$M_Q = \left(\sum \left(J_c \frac{\lambda_L}{\cos \theta}\right)\right) \text{(transect area)}$$

 $\rm M_Q$: contaminant mass discharge estimated at the borehole [M/T]

J_c : FRPFM mass flux measurement [M/LT]

(J_c = contaminant mass flux*aperture)

 λ_L /cos θ : measured fracture frequency corrected for orientation bias

 $\boldsymbol{\theta}$: orientation angle between joint normal and borehole

Project Status

- FRPFM was validated in the laboratory.
- FRPFM is being demonstrated and validated in thefield.
- Stochastic methods for estimating contaminant discharge look promising.

Questions?