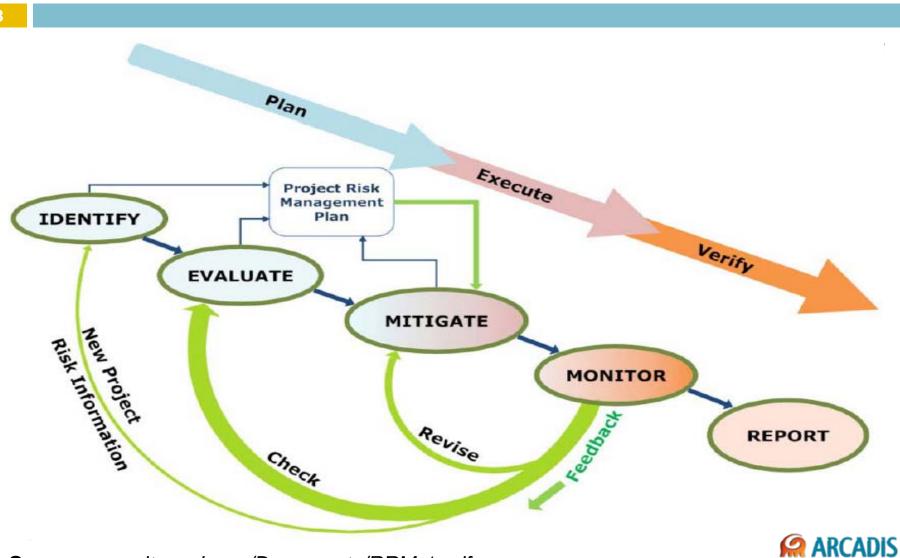
Overview of End States: Groundwater Remediation, Management and the Use of Alternative Endpoints at Highly Complex Sites

Rula A. Deeb, Ph.D., BCEEM Emeryville, CA


Federal Remediation Technologies Roundtable General Meeting November 14, 2012

Presentation Outline

- Technical challenges at highly complex sites
- Remediation risk management at highly complex sites
- Alternative endpoints and other approaches
 - Overview
 - Case studies

Project Risk Management Process

Source: www.itrcweb.org/Documents/RRM-1.pdf

Project Risk Identification at Complex Sites

Complex site setting

- Highly heterogeneous geology
- Contaminants in fractured rock, sequestered in low permeability units
- Widespread regional contamination
- Long-lived inorganic contaminants

Potential project risks

- Lack of exit strategy/ pathway to site closure
- High cost of iteratively implementing, optimizing technologies
- Long cleanup timeframe

Project Risk Evaluation at Complex Sites

- Conceptual assessments
 - Mass estimates, remedial timeframe estimates, DNAPL dissolution rates, cost estimates
- Technology performance assessments
- Integration into the conceptual site model

Likelihood of	Impact or Consequence of Occurrence				
Occurrence	Negligible	Marginal	Significant	Critical	Crisis
Very unlikely	Low risk	Low risk	Low risk	Low risk	High risk
Unlikely	Low risk	Low risk	Moderate risk	Moderate risk	High risk
Likely	Low risk	Moderate risk	High risk	High risk	High risk
Very likely	Low risk	Moderate risk	High risk	High risk	High risk

ARCADIS

Source: Section 2.3 of RRM-2 document; Table 2-3 of RRM-1 document

Project Risk Mitigation at Complex Sites

Remedial goals

- MCLs, risk-based cleanup goals
- Modified RAOs
- Alternate Concentration Limits (ACLs)
- Groundwater reclassification (can be site-specific)
- Remediation
 - Active remediation (adaptive approach)
 - Monitored natural attenuation (MNA)
 - Institutional controls

Source: Section 3 of RRM-2 document

Project Risk Mitigation at Complex Sites (*Cont'd*)

7

Containment/long-term management designations

Designation	Reference		
Containment zone	California State Water Resources Control Board Resolution No. 92-49		
Technical	Georgia VRP Act (Article 3, Chapter 8, Title 12 of the Official Code of		
impracticability	Georgia); New Jersey DEP Administrative Code 7:26E-6.1(d);		
zone	Wyoming DEQ VRP Statutes § 35-11-1605(d)		
Groundwater	Delaware Remediation Standards Guidance under the Delaware		
management zone	Hazardous Substance Cleanup Act; Illinois RCRA Facilities under 35		
	Illinois Administrative Code Part 620.250; New Hampshire		
	Department of Environmental Services Code of Administrative Rules,		
	Chapter Env-Or 600		
Risk-based tiered	Illinois Environmental Protection Agency under 35 Illinois Administrative		
objectives	Code Part 742		
Plume	Texas Commission on Environmental Quality, 30 Texas Administrative		
management zone	Code § 350.33(f)(3)(A)-(E); § 350.37(1)(4)		

Definitions

- Traditional endpoints
 - Risk-based cleanup objectives
 - ARARs
- Alternative endpoints

- Formally waive or substitute for final cleanup standards (e.g., ARAR waivers)
- Alternative goals can be used to guide intermediate milestones, remedy transition points (adaptive site management)
- Other approaches which informally acknowledge the complexity of meeting final cleanup standards
 - MNA over long timeframes

Context for Alternative Endpoints

- Considered at highly complex sites with technical cleanup challenges and limitations to cleanup
 - Meet regulatory requirements despite technical limitations
 - Establish common expectations for remedial performance
 - Provide a pathway towards remedy-in-place, long-term management strategies, regulatory closure
 - Manage remedial project risks
 - Use resources more efficiently and sustainably
- Protection of human health and environment remains the primary goal
- Alternative endpoints are no quick or easy fix. Long-term management needed to address residual contamination

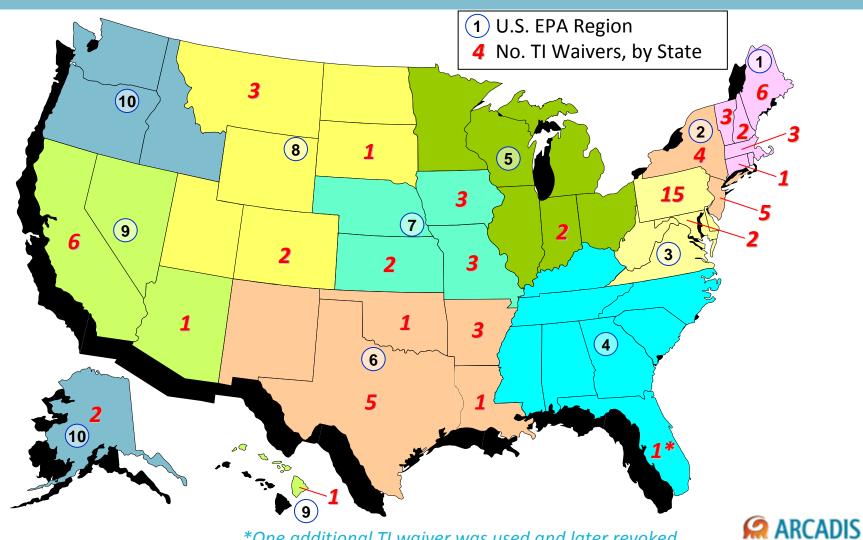
Types of Alternative Endpoints

Alternative Endpoints	CERCL A	RCRA	State(s)*
ARAR waivers	X		
Technical impracticability (TI) waivers	X	Х	
Greater risk waivers	X		
Other waivers (Interim remedy, inconsistent application of state standards, fund balancing, equivalent performance)	X		
Alternate Concentration Limits (ACLs)	Х	Х	
Groundwater management/containment	Х	Х	Х
Groundwater reclassification	Х	Х	Х

* Various terminology is used under different state cleanup programs

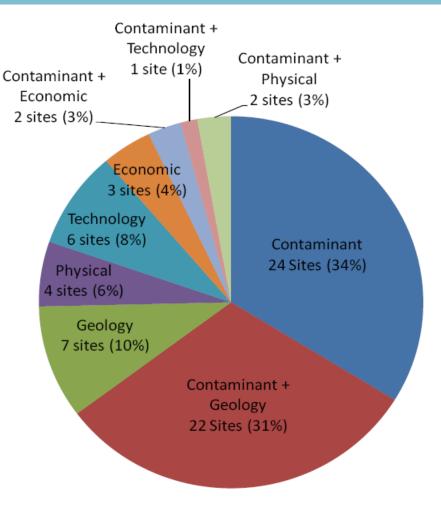
Types of Other Approaches

Other Approaches	CERCLA	RCRA	State(s)
MNA over long timeframes	Х	Х	Х
Adaptive site management	Х	Х	Х
Low-threat closure			Х



TI Waivers: Process

- Applies at sites where it is "technically impracticable to meet cleanup requirements within a reasonable timeframe"
 - Applies to specific contaminants, ARARs
 - Applies within a defined area and vertical extent (TI zone)
- Site-specific TI evaluation is required (EPA, 1993)
 - Description of the location (area and depth) and ARARs for which TI waiver applies; conceptual site model (CSM); evaluation of restoration potential; proposed remedial strategy
- Stakeholder consensus is critical
- Documented in ROD, ROD amendment or Explanation of Significant Difference (ESD)


TI Waivers Used for Groundwater at 77* CERCLA Sites

*One additional TI waiver was used and later revoked

TI Waivers: Primary Reasons

- 75% of all TI waivers are based on contaminant and/or geologic setting
 - DNAPL
 - Extensive regional contamination (e.g., mining sites)
 - Immobile, low risk
 - Fractured rock, karst environments

TI Waivers: Hydrogeology

Hydrogeologic Setting	# Sites	# Sites where hydrogeology led to Tl	Percent of Total
Fractured rock/karst/mining voids	36	21	47%
High heterogeneity	10	2	13%
High heterogeneity overlying bedrock	4	-	5%
Layered high- and low-permeability	9	2	12%
High-permeability sands and gravels	7	-	9%
High-permeability sands and gravels overlying bedrock	2	-	3%
Low-permeability silts and clays	6	6	8%
Low-permeability silts and clays overlying bedrock	3	-	4%
TOTAL	. 77	31	100%

TI Waivers: Contaminant Characteristics

16

- NAPL is present at 56% of all sites
- Mix of various contaminants typically included
 - Chlorinated solvents
 - Creosote/PAHs
 - Metals/mine drainage

Compounds	# Sitee
	Sites
Chlorinated solvents, VOCs	16
Coal tar, PAHs, creosote	11
Metals	14
BTEX	1
PCBs	2
Pesticides	2
Mixture (2 or more types)	20
Mixture (3 or more types)	11
TOTAL	77

TI Waivers: Case Study # 1 J.H. Baxter Site (Weed, California)

Wood treatment facility (PCP, PAHs, arsenic, dioxins, metals, creosote)

17

 DNAPLs present in source zone; timeframe estimates > 400 years, assuming 95% mass removal

Remedy included TI waiver, slurry wall, pump-and-treat system for containment, long-term monitoring, and institutional controls

TI Waivers: Case Study # 2 RCRA site in Connecticut

Former factory for aircraft engines

- 133 areas of concern over 40 acres
- 1,1,1-TCA DNAPL in a multi-layer overburden aquifer
 - Sands and silty sands with silty-clay confining layer

- Project risks of reaching site closure goal
 - Feasibility study shows clean closure is not feasible
 - Remedial efforts may be ineffective and costly
 - Long-term stewardship requires stakeholder support

TI Waivers: Case Study # 2 (Cont'd) RCRA site in Connecticut

Investigation

- Delineate limits of VOC contamination
- Demonstrate stable or diminishing plume (hydraulic control)
- Mass flux and natural attenuation calculations
- Remediation to extent practicable
 - Excavation, in-situ heating, persulfate ISCO, high-vacuum extraction for mobile NAPL
 - Long-term stewardship
 - Modeling to define boundary restricting groundwater use
 - Technical impracticability assessment and approval

Greater Risk Waiver: Overview

- Waives ARAR at sites where greater harm would result by conducting activities to meet ARAR
- Examples of potential "greater risk" scenarios
 - Potential DNAPL mobilization, spreading
 - Damage to sensitive ecosystems, species
 - Technology-related health and safety risks
- Waiver is not often used
 - Few examples of process, tools used to justify greater risk
- Long-term monitoring, five-year reviews needed

Greater Risk Waiver Onondaga Lake LCP Bridge Street Site, New York

- DNAPL mercury contamination
- Managed in place because of the greater risk of exposure during excavation and off-site transport

Remedy included greater risk waiver, slurry wall, pump-and-treat system, excavation of shallow soils, temporary cap, and long-term monitoring

Alternate Concentration Limits (ACLs)

- Replaces or modifies groundwater cleanup requirements
- Only applies at sites where contaminated groundwater discharges to surface water
 - Accounts for dilution that occurs prior to point of exposure
 - Basis for ACL value in groundwater
 - Can be calculated from surface water quality criteria (assuming dilution, perhaps using mixing zone model)
 - Can be risk-based value
- Formal process under CERCLA (EPA, 2005) and RCRA

ACLs: Case Study Former Naval Station, Long Beach, CA

- VOCs in groundwater, established ACLs based on CA Ocean Plan
 - ACL point of compliance at land's edge

- Post-air sparge/vapor extraction system operation
- Response complete in 2007. Currently, long-term management
 - No longer performing groundwater monitoring at IR Sites 1, 2
 - Maintaining LUCs, five-year reviews

Groundwater Management

- Used to define areas that exceed water quality standards and manage contaminants in place
 - Terminology and meaning varies from state to state
 - Sometimes indicates cleanup is technically infeasible
 - Can be used for tracking land use controls
- Formal designations in federal and state cleanup programs
 - Plume management zone (Texas)
 - Technical impracticability (Wyoming, Georgia)
 - Waste Management Areas (RCRA, CERCLA)

Groundwater Management Three Examples

25

Description	Georgia	Texas	Illinois
Designation	Technical impracticability (TI) zone	Plume management zone (PMZ)	Groundwater management zone (GMZ)
Regulation	Part 3 of the Georgia Voluntary Remediation Program Act (2009)	30 Texas Admin. Code 350.33(f)	35 III. Adm. Code Part 620.250
Jurisdiction	Georgia Voluntary Remediation Program	Texas Risk Reduction Program	Illinois EPA and Site Remediation Program
Purpose	 Site delineation or remediation not required beyond the point of TI, if the site does not pose imminent or substantial danger 	 Modifies groundwater cleanup objectives by controlling and preventing the use of and exposure to groundwater 	 For areas that do not yet meet cleanup standards Used to delineate and track institutional controls
Example site	May include DNAPLs in fractured bedrock settings	Naval Weapons Industrial Reserve Plant (NWIRP) Dallas, Texas	Joliet Army Ammunition Plant, Illinois

Groundwater Management Case Study: LNAPL site in Texas

- Fuel oil releases in several areas at power station
- LNAPL fuel oil present in groundwater over 0.5 acres in active power station
 - LNAPL delineation and recovery as interim remedy
 - Source area inaccessible; residual NAPL likely
- Risk driver 1-methylnaphthalene in soils to 38 feet
- Project risks

- Schedule delays would affect fixed-price contract
- Cost, safety issues with large deep excavation

Groundwater Management Case Study: LNAPL site in Texas (*Cont'd*)

- Used Texas risk-based NAPL management guidance
 - Robust data set for soil and groundwater end points
 - Designed LNAPL characterization program and demonstrated LNAPL was immobile
 - Used TRRP-32 framework for requesting in-place closure
- Risk-based soil cleanup
 - Careful assessed risk pathway leaching to groundwater
 - Lines of evidence approach: soil source area delineation, time since release occurred, leachate test results, concentration trends in soil and groundwater

Other Approaches

- MNA over long timeframes
- Adaptive site management
- Low-threat closure

MNA Over Long Timeframes

- Monitoring and/or limited action, approved over long timeframe (e.g., ~100 years)
- Applied at sites where circumstances warrant and stakeholders accept long timeframe
 - Timeframe for all other remedial options may be similar
- No separate formal process
- Avoids controversy of ARAR waivers
- MNA is fairly well-accepted, low cost, may be greener

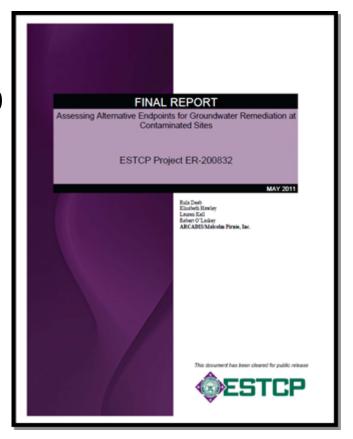
MNA Over Long Timeframes Case Study: Orlando, FL

- Site setting (vehicle maintenance, waste oil/fuel drums, wash racks, TCE likely present as DNAPL)
 - Past remedial activities

- ISCO (Fenton's) as an interim remedy to reduce total chlorinated VOCs below 500 µg/L (lack of hydraulic connection, preferential flow path, rebound due to back-diffusion)
- Enhanced bioremediation
- MNA multiple lines of evidence (stable plume, favorable geochemical conditions, functional genes present for dehalogenation, reductive dechlorination products)
- Approach supported by Partnering Team despite remedial timeframe of 60-70 years with source removal and VOC concentrations 10-100 times greater than MCLs

Summary

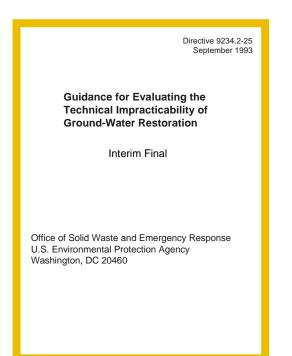
- Several options for alternative endpoints and other approaches for groundwater at complex sites
- Applicable under CERCLA, RCRA, and/or several state cleanup programs
- Long-term management of residual contamination likely needed
- RRM principles can be used to identify, evaluate, mitigate, monitor and document project risks

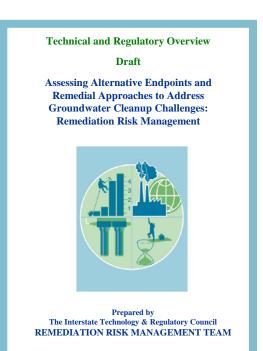

Summary (Cont'd)

- Factors that increase likelihood of implementing an alternative endpoint
 - Broad stakeholder agreement on conceptual site model
 - Controlled risks/threats (incomplete pathways)
 - Contingency measures to protect human health and environment
 - Durable and reliable ways to manage long-term residual contamination
 - Receptiveness of regulatory agency and stakeholder
 - Collaboration between stakeholders
 - Communication strategies to reduce barriers

Resources

- EPA policy and guidance
- ESTCP report www.serdp.org/content/download/10 619/130969/file/ER-200832-FR.pdf





Resources (Cont'd)

ITRC overview document

- Developed in response to state survey
- Identify and manage project risks before they occur

References

- EPA, 1993. Guidance for assessing the technical impracticability of ground water cleanup
- EPA, 2005. Use of Alternate Concentration Limits in Superfund cleanups
- EPA, 2007. Recommendations from the EPA Ground Water Task Force
- EPA, 2009. Summary of key existing EPA CERCLA policies for groundwater restoration, OSWER Directive 9283.1-33
- ESTCP, 2011. Alternative Endpoints and Approaches Selected for the Remediation of Contaminated Groundwater, ESTCP Project ER-200832
- ITRC, 2011. Assessing alternative endpoints and remedial approaches to address groundwater cleanup challenges: Remediation risk management.
- US AEC, 2004. Technical Impracticability Assessments: Guidelines for Site Applicability and Implementation, Phase II Report (USAEC), March

