ADVANCES IN MONITORING PETROLEUM CONTAMINATED SITES

Federal Remediation Technologies Roundtable November 2, 2016 Reston, Virginia

Th	ermal NSZD Dashboard
	1,000 eU/are/y Degraded
	Ant Ant Ant

Charles Newell, GSI Environmental Tom Sale, Colorado State John Connor, GSI Environmental Poonam Kulkarni, GSI Environmental Keith Piontek, TRC Consultants

Key Electron Acceptors For MNA (Yellow/Red Is BTEX Plume) (Concentration: mg/L)

Dissolved Oxygen "Hole"

Nitrate "Hole"

0.05

Ferrous Iron "Blob"

Sulfate "Hole"

Dissolved Methane "Plume"

MNA Mass Balance in Plumes: Electron-Acceptor-Limited Biodegradation

Monitored Natural Attenuation (MNA) versus Natural Source Zone Depletion (NSZD)

Monitored Natural Attenuation (MNA)

- Mostly focused on plume ("how far")
- For hydrocarbon plumes, key focus on:

Electron Acceptors

- Dissolved Oxygen
- Nitrate
- Ferric iron (solid)
- Sulfate
- Methanogenesis

- Benzene
- Toluene
- Ethylbenzene
- Xylenes

WAIT – THERE'S MORE!

Groundwater Mass Flux vs. Vapor Phase Mass Flux

Original NSZD Conceptual Model

Lundegard and Johnson, 2006; ITRC, 2009

Groundwater Mass Flux vs. Vapor Phase Mass Flux

Original NSZD Conceptual Model

Johnson Lundegard NSZD Conceptual Model: Include vapor pathway

Groundwater Mass Flux vs. Vapor Phase Mass Flux

Monitored Natural Attenuation (MNA) versus Natural Source Zone Depletion (NSZD)

Monitored Natural Attenuation (MNA)

- Mostly focused on plume
- For hydrocarbon plumes, key focus on:

Electron Acceptors

- **Dissolved Oxygen**
- Nitrate
- Sulfate
- **Methanogenesis**

Natural Attenuation

- **Electron Donors**
- Toluene
- Ethylbenzene
- **Xylenes**

Bottom of Wate

Natural Source Zone Depletion (NSZD)

Focused on source attenuation ("how long")

For hydrocarbon sites, key focus LNAPL

Key reactions:

LNAPL \implies CO₂ + Methane

Methane \implies CO₂

Fig. 1. Conceptual model of contamination in the vadose zone at the Bemidji site.

9

Direct Offgassing and Ebullition of Biodegradation Gases

Direct Offgassing and Ebullition of Biodegradation Gases

space with LNAPL (Ng et al., 2015)

Direct Offgassing and Ebullition of Biodegradation Gases

nnel!

13

Source: (

200

NSZD Conceptual Model

NSZD Conceptual Model

Measure CO₂ at surface to get NSZD rate

NSZD STUDIES: Johnson et al, 2006; Lundegard and Johnson, 2006; Sihota et al., 2011; McCoy et al., 2013

1.000 E FLUX

Lundegard and Johnson, 2006

E-Flux traps measure CO₂ mass flux

What NSZD Rates are Being Observed?

NSZD Study	Site-wide NSZD Rate (gallons/ acre /year)
Six refinery terminal sites (McCoy et al., 2012)	2,100 – 7,700
1979 Crude Oil Spill (Sihota et al., 2011)	1,600
Refinery/Terminal Sites in Los Angeles (LA LNAPL Wkgrp, 2015)	1,100 — 1,700
Five Fuel/Diesel/Gasoline Sites (Piontek, 2014)	300 - 3,100
Eleven Sites, 550 measurements (Palaia, 2016)	300 — 5,600

Locations across U.S. where carbon traps have been used to measure NSZD rates (E-Flux, 2015).

KEY Measured NSZD rates in the*POINT:* 100s to 1000s of gallons per acre per year.

Reactive transport modeling of geochemical controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN

Gene-Hua Crystal Ng^{1,2}, Barbara A. Bekins², Isabelle M. Cozzarelli³, Mary Jo Baedecker³, Philip C. Bennett⁴, Richard T. Amos⁵, and William N. Herkelrath²

Figure 1. New conceptual model of the Bernidji north pool implemented with the reac-

Reactive transport modeling of geochemical controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN

Gene-Hua Crystal Ng^{1,2}, Barbara A. Bekins², Isabelle M. Cozzarelli³, Mary Jo Baedecker³, Philip C. Bennett⁴, Richard T. Amos⁵, and William N. Herkelrath²

Figure 1. New conceptual model of the Bemidji north pool implemented with the reac-

How Can NSZD Rates Be Used?

- To confirm that LNAPL is biodegrading and quantify the rate
- More accurate estimation of remediation timeframe by NSZD
- Evaluate and/or replace an active remediation system

Optimizing Active LNAPL Remediation Compare to NSZD

Source (active systems): Palia, 2016

Active Remediation vs. NSZD Rates Palaia, 2016

NSZD Site Closure: 3 Case Studies

Kansas Tank Farm

- Active system with negligible LNAPL recovery rates
- NSZD measurements from 2012-2014 (Carbon traps + thermal monitoring)

• KDHE approved system shutdown in 2015

California Pipeline Terminal

- Active system with LNAPL recovery rates ~20 gal/yr
- NSZD rates measured at >3,000 gal/ac/yr
- State Water Board ruling: "Can't dictate technology"
- NSZD identified as viable remediation technology

Oregon Railyard

- Active systems: skimming, vacuum enhanced fluid recovery, total fluids recovery
- NSZD rates were an order of magnitude higher than current methods
- ODEQ approved conditional NFA for the site

Kansas City, KS – Variability in Measured Rate by Location

Can We Optimize How We Measure NSZD?

Real of the

"Turning a Hot Compost Pile"

NSZD Conceptual Model

Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site

Ean Warren *, Barbara A. Bekins

U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, United States

Fig. 4. Conceptual model of methane generation and oxidation in the unsaturated zone above the light non-aqueous phase liquid (LNAPL). Adapted with permission from Sihota et al. (2011). Copyright 2011 American Chemical Society.

Fig. 10. Contours of temperatures above background from 22 July 2013 to 21 July 2014 for sites 4 (a) and 5 (b). 29

Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site

Ean Warren *, Barbara A. Bekins

U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, United States

Site	Total depth, m	f _{depth}	∆Z, m	∆ <i>T</i> , °C	<i>q</i> ^{<i>H</i>} ^{<i>h</i>} W m ^{−2}	Rate, mol m ⁻² y ⁻¹	Temperature Method: 30 mol/m ² /year
2	5.8	0.4	2.3	0.7	0.38	18	
3	5.6	0.9	5.1	1.6	0.38	18	
4	5.5	0.6	3.3	1.7	0.63	30	
5	7.6	0.7	5.3	3.2	0.76	36	

Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site

Ean Warren *, Barbara A. Bekins

U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, United States

Site	Total depth, m	f _{depth}	ΔZ, m	∆ <i>T</i> , °C	<i>q_њ</i> W m ⁻²	Rate, mol m ⁻² y ⁻¹	Temperature Method: 0.95 um/m2/sec
2 3 4	5.8 5.6 5.5	0.4 0.9 0.6	2.3 5.1 3.3	0.7 1.6 1.7	0.38 0.38 0.63	18 18 30	600 gal/acre/yr
5	7.6	0.7	5.3	3.2	0.76	36	Sihota et al., 2016: LI-COR 1.1 um/m2/sec 690 gal/acre/yr

CSU/GSI/TRC Thermal NSZD Technology Rollout 2012 - 2016

- 416 Thermocouples
- 38 Wireless Modems
- ~8 million temperature values

Sale et al., Feb. 2014 Provisional Patent

Lateral energy loss negligible

- Lateral energy loss negligible
- Background location corrects for solar energy input

- Lateral energy loss negligible
- Background location corrects for solar energy input
- Steady-state; no change in storage

- Lateral energy loss negligible
- Background location corrects for solar energy input
- Steady-state; no change in storage

NSZD Conceptual Model

Fourier's Law: $E_{out} = K_T dT/dz$ Heat flux: (watts/m²)

Where:

K_T thermal conductivity (W/m°C)
Z depth interval of heat flux (m)
T change in net temperature (°C)

Both Combustion and Biodegradation Generate Heat

Heat of combustion for gasoline: 45 kilojoules per gram

Burn 1 gram gas: 45 kilojoules

Biodegrade 1 gram gas: 45 kilojoules

NSZD Rate (Mass degraded = per area per time)

Heat Flux (joules/area/time)

Heat of Reaction (joules per mass)

H_{rxn} = 45 kilojoules per gram

NSZD Rate can be converted to gallons per acre per year

Field Installation for Thermal NSZD

Field Installation: Thermal Monitoring System

Thermocouple on temperature monitoring "stick."

SOURCE: CSU

Field Installation: Thermal Monitoring System

Thermocouple on temperature monitoring "stick."

Installation of stick using direct push rig.

SOURCE: CSU

Field Installation: Thermal Monitoring System

Thermocouple on temperature monitoring "stick."

Installation of stick using direct push rig.

Solar power supply and weatherproof box with data logger and wireless communications system.

Results from One Site: Background-Corrected Temperature

HEAT SIGNAL OVER TIME

(Stockwell, 2015; Colorado State University)

Thermal NSZD: Continuous Remote Monitoring of Natural Source Zone Depletion (NSZD)

The Thermal NSZD technology (patent pending) measures the rate at which natural biodegradation destroys free-phase product (LNAPL) in the subsurface by measuring the heat released by the microbial reactions.

Advantages of Thermal NSZD

Secured, read only access to site data for regulators.

www.ThermalNSZD.com

Patent Pending

But Natural Variation in Soil Temperature Complicate this Energy Balance

Seasonal Change, Background Correction vs. Depth

Natural Seasonal Temperature Changes

Heat Signal from Biodegradation = Temp. in LNAPL – Background Temp.

Subtract Out Background Soil Temperature

Ę	
$\overline{}$	 -

Sitewide NSZD Rates

Amount of LNAPL Degraded Since NSZD Monitoring Began: 38,227 gallons LNAPL Natural Source Zone Depletion Rate Over Past 30 Days: 177 gallons/acre/year **38,000 gallons of LNAPL** degraded since NSZD monitoring began

copyright GSI Environmental Inc. © 2015-2016

⊙ Render Time: 0.2584 - Memory: 1MB J Security Level: 1

Advantages

- One-time installation for getting continuous NSZD rates
- Remote monitoring via secure Dashboard
- Can be "silent sentinel" for change of conditions
- One way to optimize NSZD by replacing frequent site visits

Disadvantages

- Indirect measure of NSZD
- Requires oxidation of methane
- Limited comparisons with other NSZD methods

Wrap Up

55

QUESTIONS?

FOR MORE INFORMATION:

Charles Newell cjnewell@gsi-net.com

Tom Sale tsale@engr.colostate.edu

John Connor jac@gsi-net.com

Poonam Kulkarni prk@gsi-net.com

• Spare Slides

¹⁴C Method: When was the Carbon Removed from Atmosphere?

Modern Carbon is from....

plants that removed carbon from atmosphere recently, ¹⁴C has not broken down yet...

LNAPL Carbon is from.... Plants that removed carbon from atmosphere by plants millions of years ago – all ¹⁴C is gone by now.

"Modern" CO₂

Dividing Line: 60,000 years ago "Hydrocarbon" CO₂

Original Research

Seasonal Variability in Vadose Zone Biodegradation at a Crude Oil Pipeline Rupture Site

N.J. Sihota,* J.J. Trost,* B.A. Bekins, A. Berg, G.N. Delin, B. Mason, E. Warren, and K.U. Mayer

Temperature as a Tool to Evaluate Aerobic Biodegradation in Hydrocarbon Contaminated Soil

by Robert E. Sweeney and G. Todd Ririe

 $G-bio = ku * (dT_u / dz) + kd * (dT_d / dz_d)$

Figure 9. Plot of 2010 spring vs. fall in situ groundwater temperature for wells within the background, natural attenuation, and SVE areas at site in North-Central United States.