

Proudly Operated by Battelle Since 1965

Overview of Remediation Technologies for Radionuclides in Soil and Groundwater

MICHAEL TRUEX

Pacific Northwest National Laboratory

Remediation technologies operate at the intersection of

- radionuclide characteristics
- the target problem
- remedy functionality
- remediation objectives

- Radionuclide characteristics related to remediation
- Considering end states and attenuation in remedy decisions
- Remedy technologies and approaches
- Remedy implementation
- Discussion focused on
 - Uranium, Tc-99, Sr-90, I-129, tritium
 - Groundwater protection and groundwater remediation

Radionuclide Characteristics (Friend or Foe)

Proudly Operated by Battelle Since 1965

Half-life

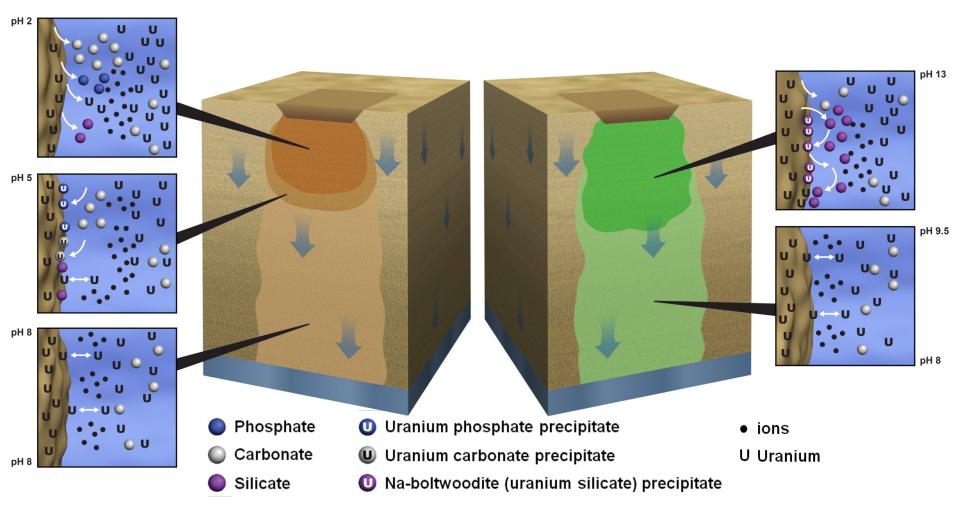
Shorter is better (when exposure is controlled)

Sr-90 or tritium compared to uranium, I-129, or Tc-99

- Mobility (sorption)
 - Very low mobility generally good
 - Medium or high mobility depends on the situation
 - Attenuated transport can be helpful (vadose zone contamination) or problematic (P&T)
 - Secondary sources are problematic unless balanced by attenuation

Radionuclide Characteristics (Friend or Foe)

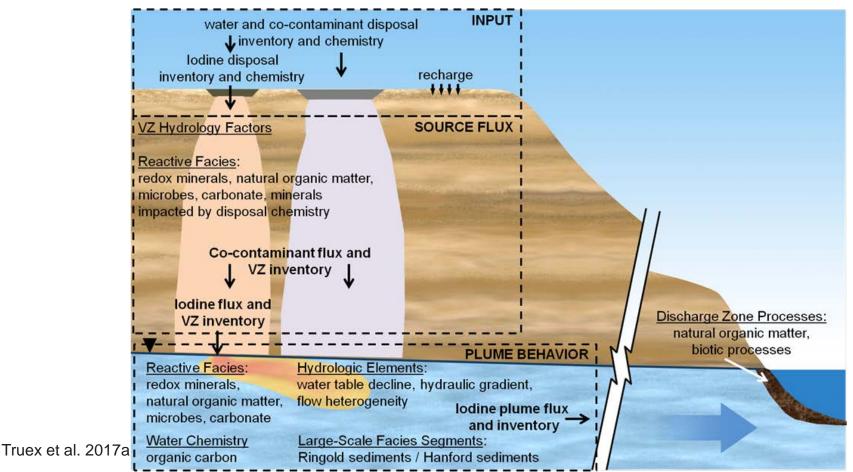
Proudly Operated by Battelle Since 1965


Biogeochemical interactions

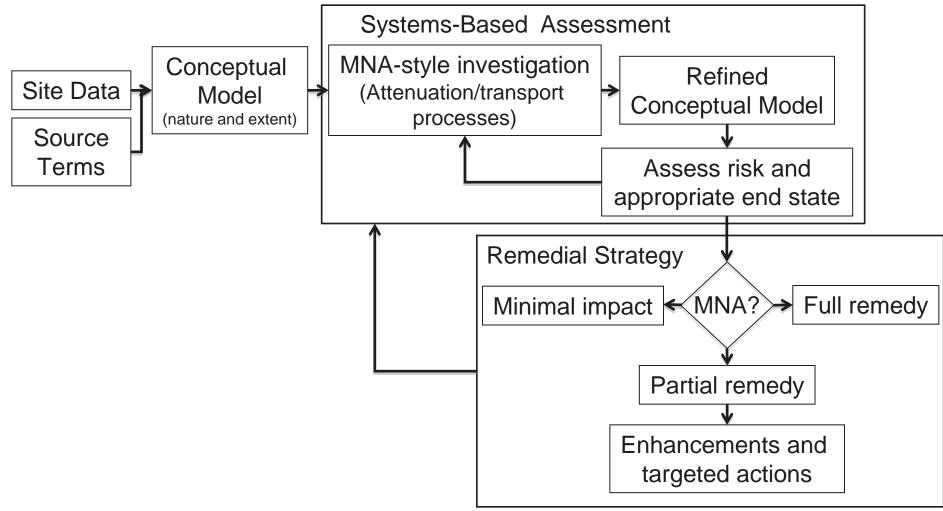
- Helpful
 - Uranium and Sr-90 interactions with phosphate
 - Uranium silicate precipitates
- Mixed
 - Uranium and I-129 (and Cr) interactions with carbonate
 - Depends on location/extent
 - I-129 species transformation
 - Depends on change in mobility and potential for attenuation/sequestration
 - Uranium and Tc-99 redox
 - Depends on setting and role in a remedy
- No interactions
 - tritium

Disposal Chemistry

Proudly Operated by Battelle Since 1965


Szecsody et al. 2013 Truex et al. 2014

Radionuclide Characteristics (Friend or Foe)


The Conceptual Site Model helps us decide:

- Friend or foe for risk and transport
- Friend or foe for remediation

Considering End States and Attenuation in Remedy Selection

Remedy Technologies and Approaches

Proudly Operated by Battelle Since 1965

Vadose zone

Attenuation

Consider transport processes in the vadose zone

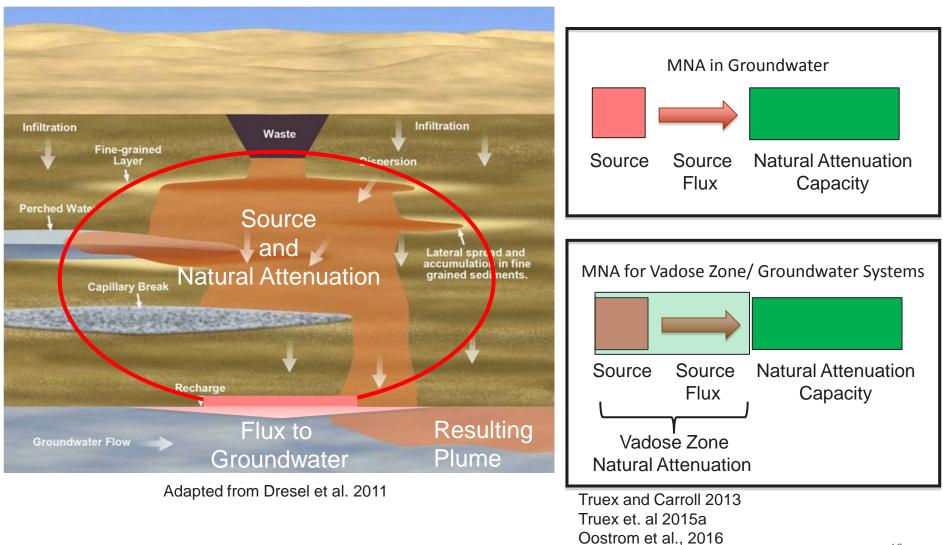
Flux control (enhanced attenuation)

Physical stabilization

Hydraulic control

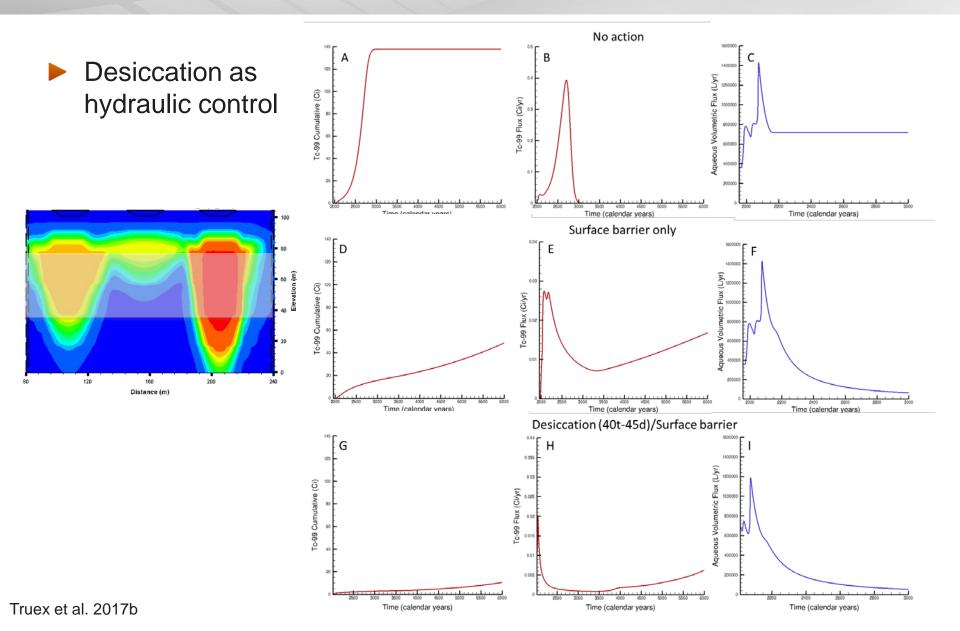
Biogeochemical stabilization

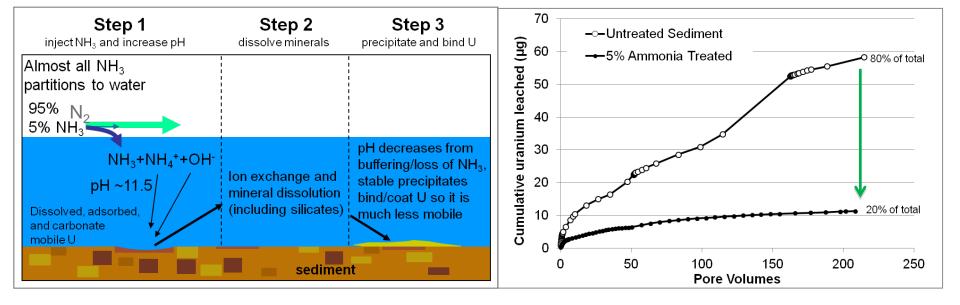
Extraction (e.g., excavation, soil flushing)


Cost/benefit

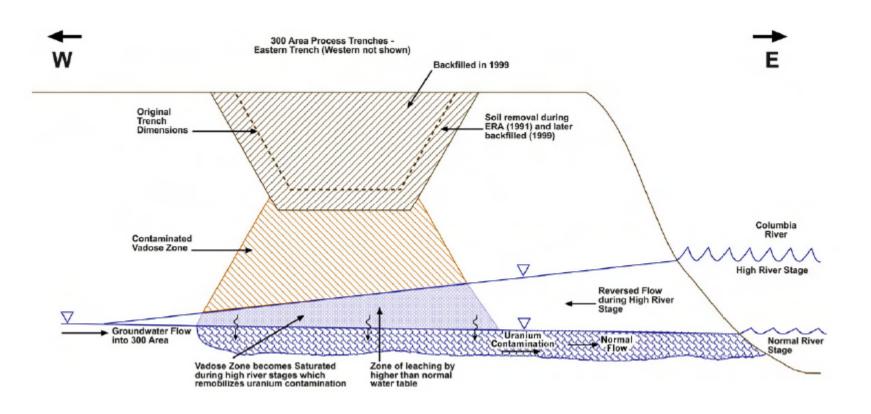
Groundwater treatment (e.g., phosphate)

 Consider vadose zone source characteristics for groundwater impact


Attenuation

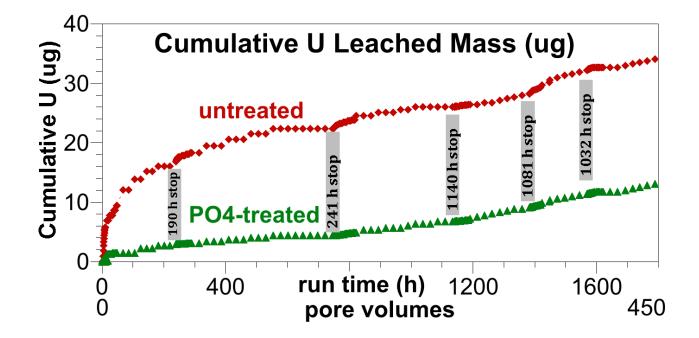

Desiccation

Geochemical stabilization – vadose zone


Ammonia gas for uranium sequestration

Uranium source zone

Periodically rewetted zone


Pacific Northwest

Geochemical stabilization – periodically rewetted zone

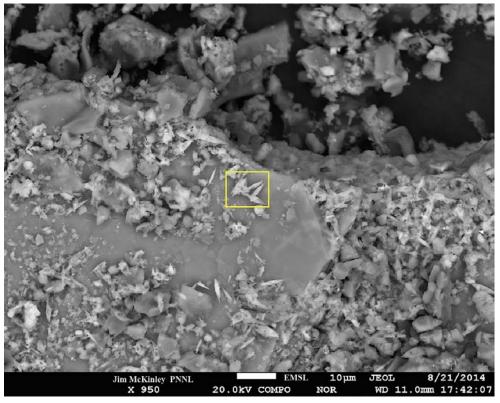
Proudly Operated by Battelle Since 1965

Phosphate treatment for uranium

Remedy Technologies and Approaches

Proudly Operated by Battelle Since 1965

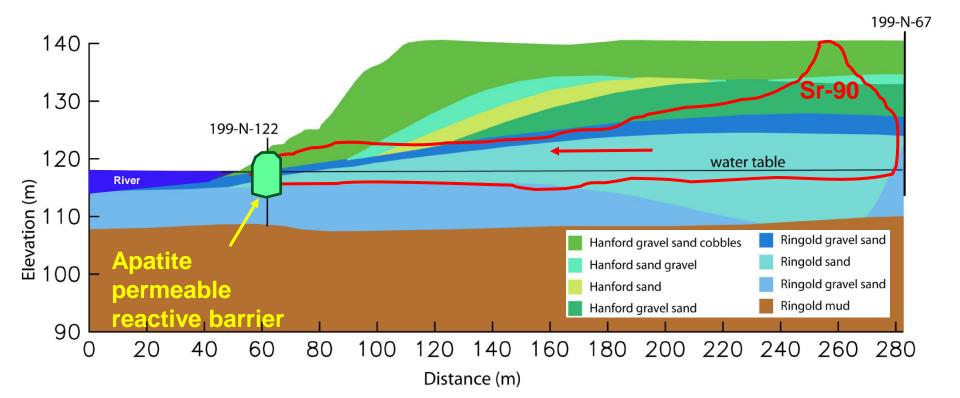
Groundwater


Attenuation

- EPA guidance
- Enhanced Attenuation and Source Control
 - Physical stabilization
 - Hydraulic control
 - Biogeochemical stabilization
- Extraction (P&T)
 - Cost/benefit
- Volumetric Treatment/Permeable Reactive Barriers
 - Scale, transport, attenuation

Carbonate interactions

Uranium, iodate, and chromate co-precipitates with calcite


Cr-calcite observed in a Hanford field sediment

Truex et al. 2015b

100-N Strontium

- Only near-river strontium is a risk to the river
- Monitoring linked to remedy approach

Remedy Implementation

Proudly Operated by Battelle Since 1965

Amendment distribution

- Vadose zone gas phase
- Phosphate mobility
- Particles
- Bioremediation amendments

Reductants

Proudly Operated by Battelle Since 1965

ZVISMI

Truex et al. 2011a Truex et al. 2011b

Remedy Implementation

Proudly Operated by Battelle Since 1965

Adaptive Site Management

- National Research Council
- ITRC
 - Remediation Management of Complex Sites
 - <u>http://rmcs-1.itrcweb.org/</u>
- Exit Strategies (P&T)
 - <u>http://bioprocess.pnnl.gov/Pump-and-Treat.htm</u>

References

- Dresel, P.E., D.M. Wellman, K.J. Cantrell, and M.J. Truex. 2011. Review: Technical and Policy Challenges in Deep Vadose Zone Remediation of Metals and Radionuclides. *Environ. Sci. Technol.* 45(10):4207-4216.
- Oostrom, M., M.J. Truex, GV Last, CE Strickland, and GD Tartakovsky. 2016. Evaluation of Deep Vadose Zone Contaminant Flux into Groundwater: Approach and Case Study. *Journal of Contaminant Hydrology*. 189:27–43.
- Szecsody, J.E., M.J. Truex, N. Qafoku, D.M. Wellman, T. Resch, and L. Zhong. 2013. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments. *J. Contam. Hydrol.* 151:155-175.
- Szecsody, J.E., et al. 2012. Geochemical and Geophysical Changes During NH3 Gas Treatment of Vadose Zone Sediments for Uranium Remediation. Vadose Zone J. 11(4) doi: 10.2136/vzj2011.0158.
- Szecsody, JE, et al. 2010. Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Gas: FY10 Laboratory-Scale Experiments. PNNL-20004, Pacific Northwest National Laboratory, Richland, WA.
- Truex, MJ, BD Lee, CD Johnson, NP Qafoku, GV Last, MH Lee, and DI Kaplan. 2017a. Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site. PNNL-24709, Rev. 2, Pacific Northwest National Laboratory, Richland, WA.
- Truex, MJ, GB Chronister, CE Strickland, CD Johnson, GD Tartakovsky, M Oostrom, RE Clayton, TC Johnson, VL Freedman, ML Rockhold, WJ Greenwood, JE Peterson, SS Hubbard, AL Ward. 2017b. Deep Vadose Zone Treatability Test of Soil Desiccation for the Hanford Central Plateau: Final Report. PNNL-26902, Pacific Northwest National Laboratory, Richland, WA.
- Truex, MJ, M Oostrom, and GD Tartakovsky. 2015a. Evaluating Transport and Attenuation of Inorganic Contaminants in the Vadose Zone for Aqueous Waste Disposal Sites. PNNL-24731, Pacific Northwest National Laboratory, Richland, WA.
- Truex, MJ, JE Szecsody, NP Qafoku, R Sahajpal, L Zhong, AR Lawter, and BD Lee. 2015b. Assessment of Hexavalent Chromium Natural Attenuation for the Hanford Site 100 Area. PNNL-24705, Pacific Northwest National Laboratory, Richland, Washington.
- Truex, M.J., et al. 2014. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau. PNNL-23666, Pacific Northwest National Laboratory, Richland, WA.
- Truex, M.J., T.W. Macbeth, V.R. Vermeul, B.G. Fritz, D.P. Mendoza, R.D. Mackley, T.W. Wietsma, G. Sandberg, T. Powell, J. Powers, E. Pitre, M. Michalsen, S.J. Ballock-Dixon, L. Zhong, and M. Oostrom. 2011a. Demonstration of combined zero-valent iron and electrical resistance heating for in situ trichloroethene remediation. *Environ. Sci. Technol.* 45(12): 5346–5351.
- Truex, MJ, VR Vermeul, DP Mendoza, BG Fritz, RD Mackley, M Oostrom, TW Wietsma, and TW Macbeth. 2011b. Injection of Zero Valent Iron into an Unconfined Aquifer Using Shear-Thinning Fluids. *Ground Water Monitoring and Remediation*. 31 (1):50-58.
- Truex, MJ, PV Brady, CJ Newell, M Rysz, M Denham, and K Vangelas. 2011. The Scenarios Approach to Attenuation Based Remedies for Inorganic and Radionuclide Contaminants. SRNL-STI-2011-00459, Savannah River National Laboratory, Aiken, SC. Available at www.osti.gov, OSTI ID 1023615, doi: 10.2172/1023615.