Air Force Civil Engineer Center

Integrity - Service - Excellence

Technology Demonstration-Validation Projects for PFAS Remediation

Dr. Kent C. Glover Remedial Systems SME AFCEC/CZTE

Survey of AFCEC demonstration-validation projects related to PFAS remediation technology

- AFCEC role in technology development and technology transfer
- Summary of completed and continuing projects
- Examples
 - Source zone enhanced mass transfer and treatment
 - Electrochemical treatment
 - Enzymatic degradation

Environmental Broad Agency Announcement (BAA)

- AFCEC environmental technology BAA projects
 - Address AFCEC-specific technology challenges for priority sites and contaminants
 - Emphasize field-scale technology demonstration and validation
 - Promote technology transfer from pilot testing to wide-spread use by remediation practitioners
 - Address technology needs for environmental restoration and compliance
- Current BAA initiatives for environmental restoration
 - High resolution site characterization
 - Remediation of persistent source zones
 e.g., DNAPL, low permeability
 - Characterization and remediation of emerging contaminants e.g., PFAS, 1,4-D

Competed BAA Projects: PFAS Initiative

Project Title	End Date
Chemical Treatment of Soil and Groundwater Contaminated with Perfluorinated	2013
Compounds found in Aqueous Fire Fighting Foams	
Chemical Oxidation and Inclusion Technology for Expedited Soil and	2015
Groundwater Remediation	
Use of Boron-Doped Diamond Electrodes for Treatment of Perfluorinated	2015
Compounds	
Is Bioremediation a Relevant	2014
Attenuation Mechanism for Perfluorinated Compounds?	
In-situ Enzymatic Oxidative Treatment for Perfluorinated Compounds	2017
Focused Remedial Investigation of Potential Ecological Effects of Perfluorinated	2015
Compounds and Associated Human Exposures from Fish Consumption	

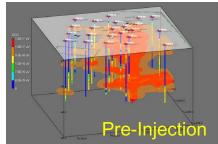
Available project information

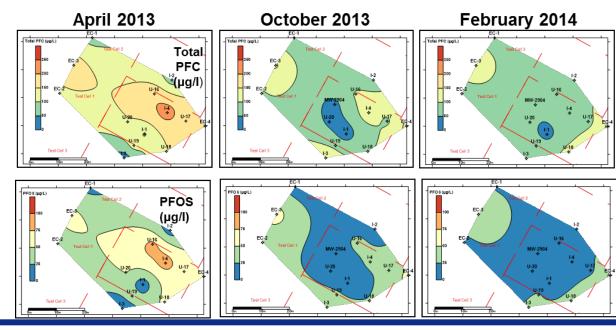
- Fact sheet and presentations
- Journal article(s)
- Final report

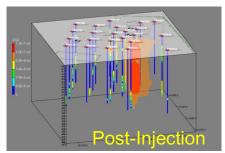
Enhanced Mass Transfer and Treatment of Source Zones

- Concept
 - Cyclodextrin (CD) to enhance contaminant availability
 - Advanced oxidation with liquid solution of dissolved ozone, hydrogen peroxide, buffered sodium persulfate
- Design
 - High resolution site characterization
 - Bench-scale testing
 - Field pilot tests with three treatment cells to optimize treatment sequence

Langley-Eustis Fire Training Area

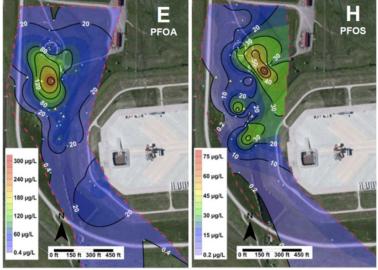

BAA FA8903-11-C-8004: Chemical Oxidation and Inclusion Technology for Expedited Soil and Groundwater Remediation


Enhanced Mass Transfer and Treatment: Results


- Optimal treatment: Sequential injections of oxidant, oxidant + CD, and oxidant
- Different PFAS responded differently: some created, some transformed, some destroyed

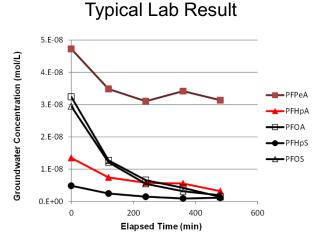
MIP ECD Data

Need to understand reaction chemistry



Electrochemical Treatment of Perfluorinated Compounds

- Concept
 - PFAS degradation on surfaces of non-consumable electrical anodes
 - Mechanisms: direct electron transfer, hydroxyl radical generation, oxidants generated from salts
 - Approach
 - Characterize PFAS at a FTA site
 - Lab tests with site groundwater mixed metal oxide (MMO) boron doped diamond (BDD)
 - Develop pilot-scale ex situ treatment unit



BAA FA8903-11-C-8008 : Use of Boron-Doped Diamond Electrodes for Treatment of Perfluorinated Compounds

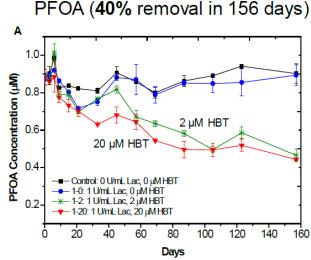
Electrochemical Treatment: Results

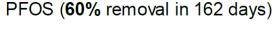
- Laboratory results
 - BDD anode generated perchlorate (not recommended)
 - MMO anode made of Ti/RuO₂ was effective
 - PFOS: 98% mass recovery as fluoride
 - PFOA: 58% mass recovery as fluoride
- Pilot-scale demonstration was inconclusive
 - Operational complications at treatment facility
 - Other contaminant interferences
 - More work needed for field-scale implementation

Pilot-Scale Treatment System

Enzymatic Degradation

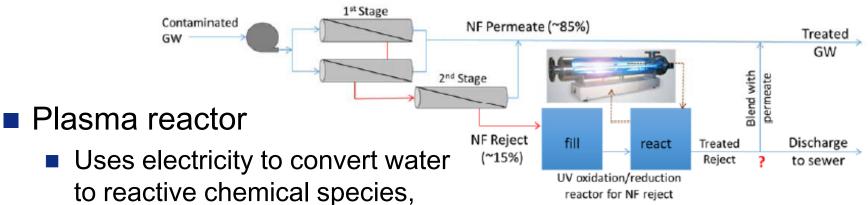
- Concept
 - Highly reactive oxidizing agents for degradation (e.g. laccase)
 - Couple with GAC to destroy PFAS and delay breakthrough
- Approach
 - Laboratory testing
 - Enzyme selection based on reactivity, stability/activity and cost
 - Pilot-scale demonstration


Characterize GAC breakthrough (PFAS, precursors); Introduce enzyme to GAC column; Rest column (1 month); resume flow


BAA FA8903-12-C-0005: In-situ Enzymatic Oxidative Treatment for Perfluorinated Compounds

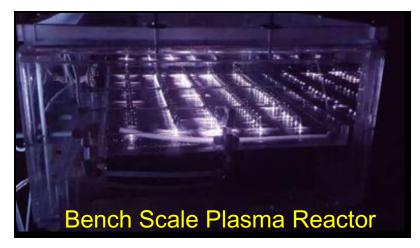
Enzymatic Degradation: Results

- Lab study shows reaction is very slow .
 - Water: 40% PFOA and 60% PFOS
 - Soil slurry: 40% PFOA
 - Shows potential if coupled with separation technology to delay PFAS breakthrough
- Pilot test
 - Comparison of GAC breakthrough vs.
 GAC + enzyme-catalyzed degradation not promising
 - Benefit significant only for PFBA
 - Options for optimization: Add O₂, extend reaction time, mediator amendment


Current BAA Projects: PFAS Initiative

Project Title	Media	Status
Perfluorochemical Treatment by	Water	Lab phase complete. Pilot-scale
Nanofiltration Plus Sequential UV	(ex situ)	system being constructed. Field-
Oxidative/Reductive Treatment of Reject		scale testing planned for FY2019.
Water		
Enhanced Contact Electrical Discharge	Water	Bench scale reactor successful.
Plasma Reactor	(ex situ)	Pilot-scale skid being constructed.
		Field-scale testing ~ Feb 2019.
Field-Scale Comparison of Adsorbents for	Soil	Field demonstration complete.
In Situ Stabilization of Poly- &		Post-treatment soil cores
Perfluorinated Alkyl Substances (PFAS)		collected for lab analysis.
Coupling Ion-Exchange Resin with	Water	Lab testing phase complete. Pilot-
Electrochemical Treatment For Complete	(ex situ)	scale system for treating resin still
Separation and Destruction of PFOS and		bottoms being developed.
PFOA in Groundwater		

PFAS Ex Situ Treatment Concepts in BAA Projects


Nanofiltration + sequential UV oxidation/reduction

UV radiation and shockwaves for cavitation and thermal treatment

Ion exchange + electrochemical treatment

- On-site resin regeneration
- PFAS degradation with ceramic titanium oxide electrode

Air Force Civil Engineer Center (AFCEC) Environmental Management Directorate Technical Division (CZTE)

Kent Glover, Remedial Systems SME: <u>kent.glover@us.af.mil</u> Monique Nixon, BAA Program Manager: <u>monique.nixon@us.af.mil</u>

> AFCEC BAA email: <u>afcec.czte.baa@us.af.mil</u> AFCEC web: <u>https://www.afcec.af.mil/</u>