Can Nanotechnology Thrive in the Environmental Technology "Bazaar"?

Workshop on Nanotechnology for Site Remediation October 20-21, 2005

Walter Kovalick Jr., Ph.D.
Director
Technology Innovation and
Field Services Division
U.S. Environmental Protection Agency
Kovalick.walter@epa.gov

Technology Innovation Program Clients

Technology Vendor

Responsible
Party/
Owner
Operator

Federal/ State Project Manager

Consulting Engineer **International Markets**

Investor Community

Technology Vendors

Technology Innovation Mission

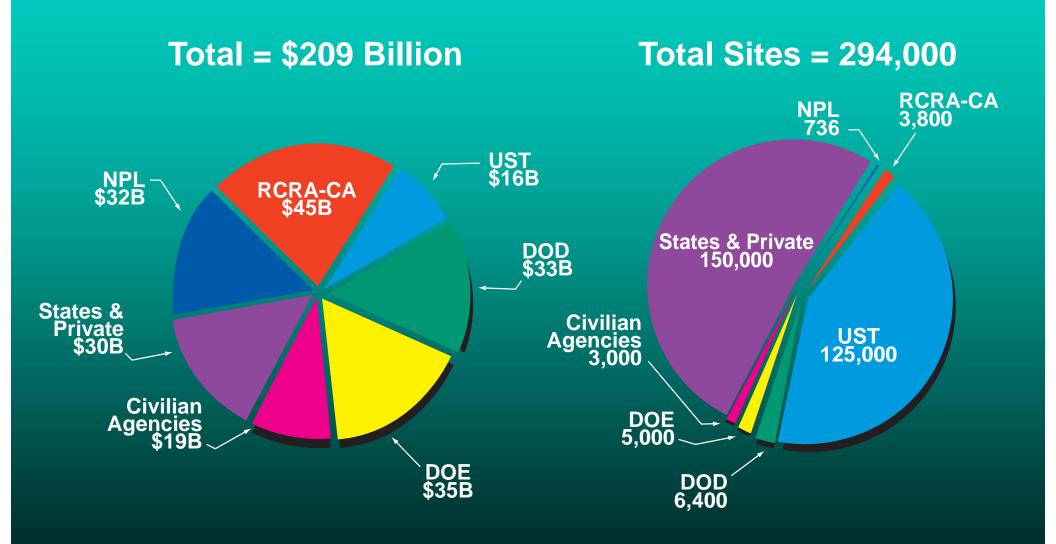
- Advocate "smarter" technologies for the characterization and cleanup of contaminated sites
- Work with clients to identify and understand better, faster, and cheaper options
- Seek to identify and reduce barriers to the use of innovative technologies

http://clu-in.org

Cleaning Up the Nation's Waste Sites: Markets and Technology Trends (2004 Ed.)

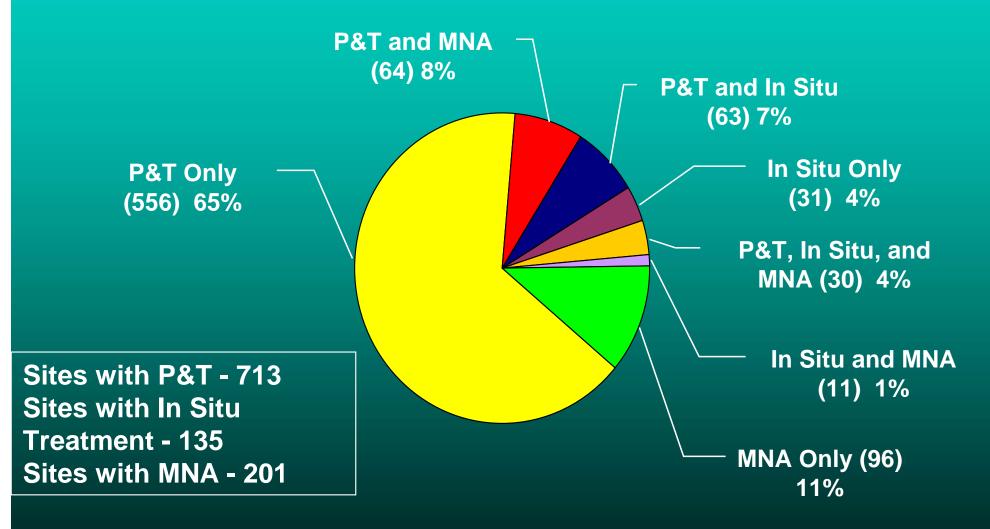
- Provides national overview of market for cleanup of sites with hazardous waste & petroleum products
- Includes:
 - Estimated number of contaminated sites needing cleanup
 - Estimated cost of cleanup
 - Site characteristics, technology trends, other factors affecting demand for remediation services
- Can help industry & government officials develop research, development, business strategies
- Can guide organizations developing, commercializing, & marketing new cleanup technologies to meet future demand

clu-in.org/markets

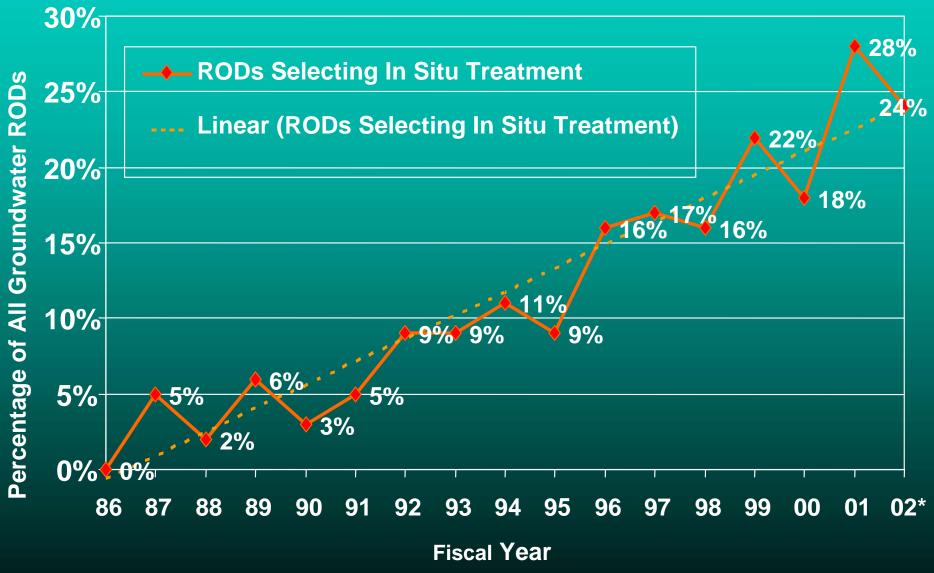

Outline

- U.S. cleanup market for site remediation technologies
- Update on field scale deployment of nanotechnology for site remediation
- Observations on entering the environmental technology "bazaar"
- Need to get the information out—who's job?
- Charge to the conference

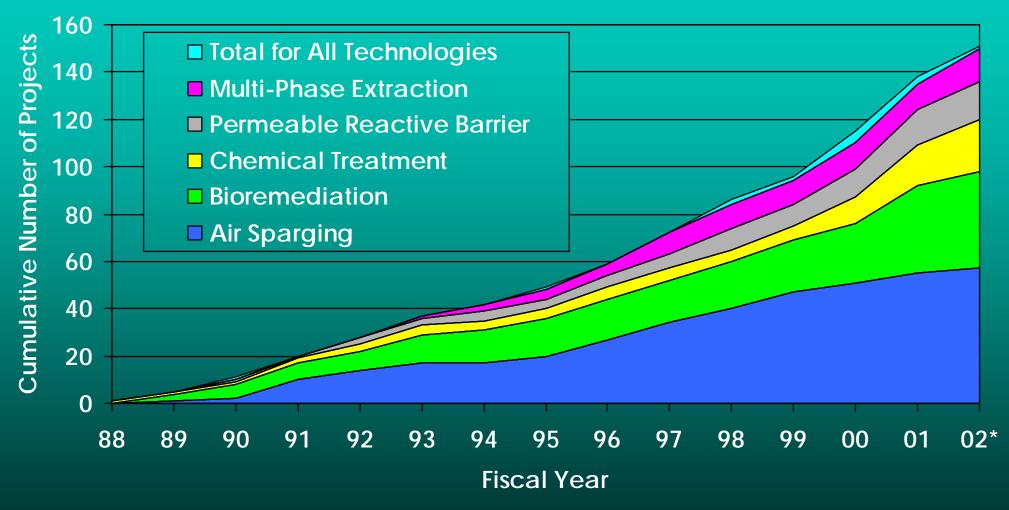
Estimated Number of Sites and Remediation Cost 2004-2033


Program	Sites	Cleanup Cost
NPL	686 – 946	\$24 – 50 B
RCRA, CA	3,800	\$31 – 58 B
RCRA, UST	95,000 – 155,000	\$12 – 19 B
DOD	6,400	\$33 B
DOE	5,000	\$35 B
Civilian Agencies	3,000	\$15 – 22 B
States & Private	150,000	\$30 B
Total Range	235,000 – 355,000	\$174 – 253 B
Middle Value	294,000	\$209 B

Estimated Number of Sites and Cleanup Cost 2004-2033


GW Treatment Remedies in Superfund

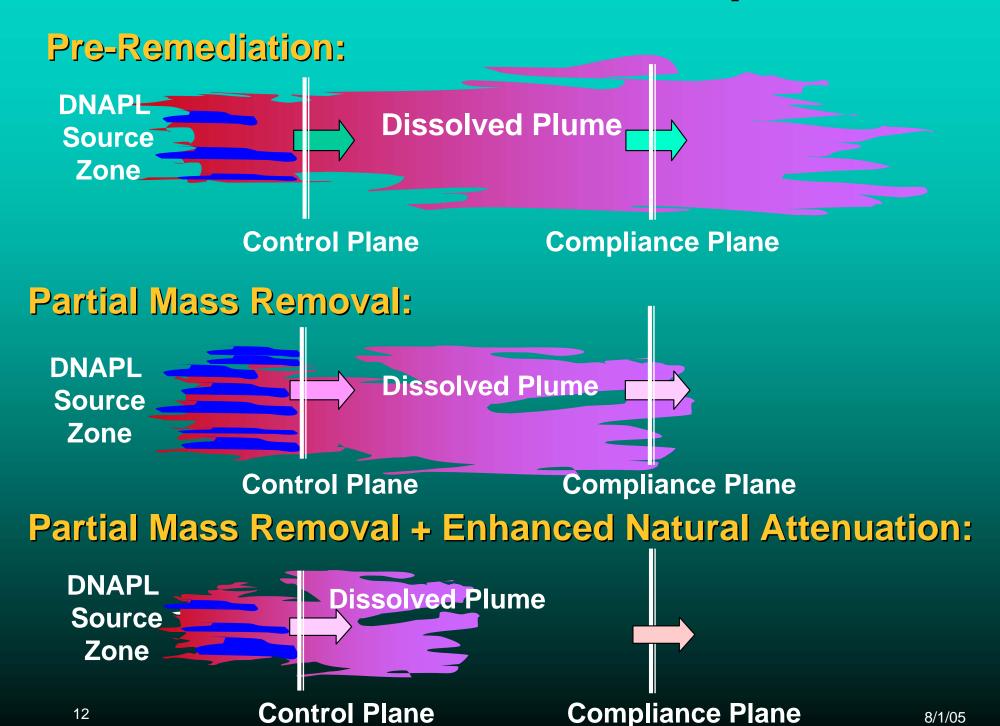
Sites with P&T, In Situ Treatment, or MNA Selected as Part of a Groundwater Remedy (Total Sites = 851)


^{*} Includes information from an estimated 70% of FY 2002 RODs.

Superfund: Trends in Percentage of Groundwater RODs Selecting In Situ Treatment (FY 1986 - 2002)*

^{*}Includes information from an estimated 70% of FY 2002 RODs

More Experience with More Technologies: In Situ Groundwater Technologies '88-02*


Includes information from an estimated 70% of FY 2002 RODs http://cluin.org/asr

Ranking Criteria for Difficulty in Remediating Ground Water

TIO Update to NRC Table, October 2002

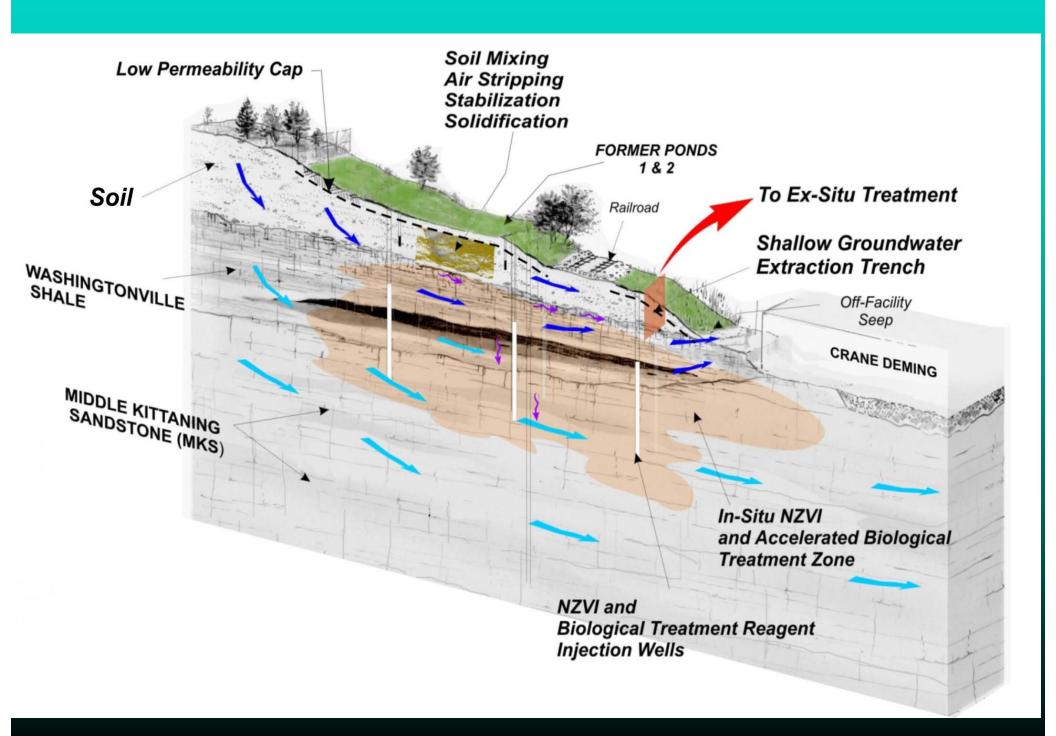
Hydrogeology	Mobile Dissolved (Degrades/ Volatilizes)	Mobile Dissolved	Strongly Sorbed, Dissolved	Strongly Sorbed, Dissolved (Degrades/ Volatilizes)	Separate Phase LNAPL	Separate Phase DNAPL
Homogeneous, Single Layer	1	1-2	2	2-3	2-3	1-2
Homogeneous, Multiple Layers	1	1-2	2	2-3	2-3	2?
Heterogenous, Single Layer	2	2	3	3	3	3 ?
Heterogenous, Multiple Layers	2	2	3	3	3	4
Fractured Bedrock	3	3	3	3	4	4

Groundwater Plume Response

Technological Approaches For Non-Aqueous Phase Liquid (NAPL) Contamination

- In Situ Thermal
 - Steam Enhanced Extraction
 - Electrical Resistive Heating
 - Thermal Conductive Heating
- In Situ Chemical Oxidation
- Surfactant Co-Solvent Flushing
- Bioremediation
- Nanotechnology

Field Scale Studies*


- Over 15 reported field-scale applications of nanoscale iron and/or bimetallic nanoscale iron particles at waste sites
- 1 field study with oil emulsion of iron nanoparticles
- 2 EPA sites considering nZVI injections
 - BP, Alaska
 - Nease Chemical, Ohio
- Majority of field studies-
 - TCE, TCA, daughter products, some Cr(VI)
 - Gravity-feed or low pressure injection
 - Source zone remediation

*From draft paper, "Emerging Nanotechnologies for Site Remediation and Wastewater Treatment" by Katherine Watlington, National Network for Environmental Management Studies; paper will be posted in the publications section of www.clu-in.org

Nease Chemical NPL Site Columbiana County, Ohio

- Produced cleaning compounds, fire retardants, and pesticides from 1961 to 1973
- Contaminants:
 - Mirex (a pesticide) and volatile organic compounds (VOCs) in soil
 - VOCs in groundwater
- Fractured bedrock under the site
- Proposed remedy for deep groundwater is to inject nZVI into aquifer to reduce VOCs

Conceptual Diagram of Proposed Remedy

BP Exploration (Alaska), Inc., RCRA Site North Slope, Alaska

- Cleaned pipes used in oil well construction from 1978 to 1982
- Proposed remedy is injection of nZVI
- Proposed remedy is expected to
 - Reduce mobility of lead contamination
 - Reduce concentrations of TCA and diesel fuel contaminants

Potential Issues with the Technology

- Potential rebound of contaminants after in situ injection of nZVI
- Iron passivation
- Agglomeration reducing effective distribution
- Expense
- Incomplete knowledge of mechanism abiotic v. biotic degradation
- Difficulty projecting particle movement

Environmental Technology Development Process

Acceptance: Commercial Application

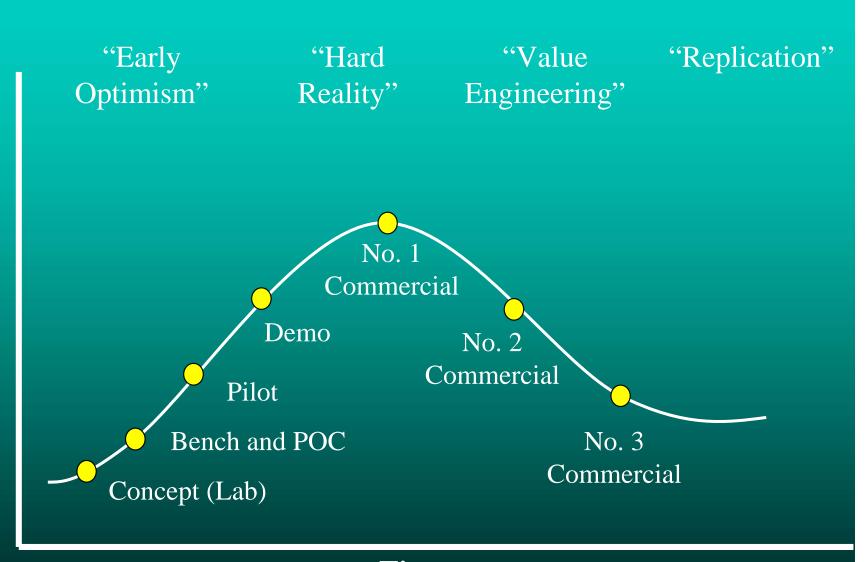
Evaluation: Commercial Application

Outreach

Continuing Research: Scaling-Up

Early Research Jp

Existing program

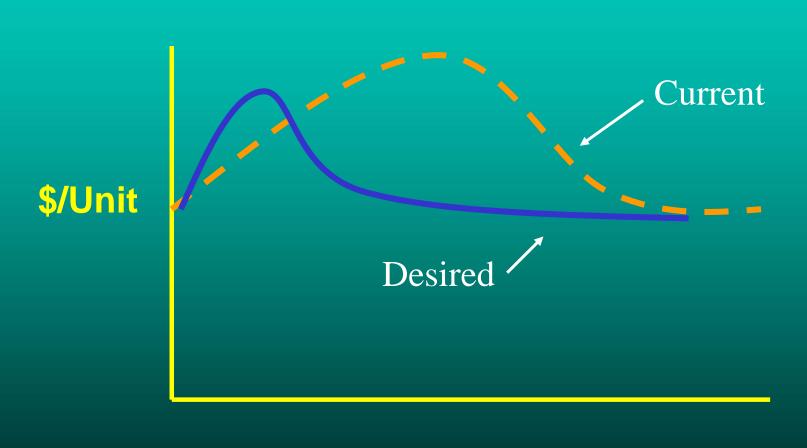

Existing Providing

Exis

Environmental Technology Marketplace

- Market is driven and constrained by regulations
- Enforcement is critical
- Stakeholder receptivity/fragmented state markets
- Transactions mediated by consulting engineers
- Risk-laden milieu
- Verification and testing needed
- Traditional commercialization issues
- Procurement/financial considerations

Stages of Technology Commercialization



Total Costs (**Installed**)

Time

Partnerships: Combining supply push with demand pull

Accelerating the Technology Maturation Process

Time (years) -----

10

Government Roles in Environmental Technology Marketplace

- Regulator/enforcer
- Funding agent/technology developer
- Information broker
 - Neutral
 - Verification agent
- Partner in deployment
- User of "first resort"

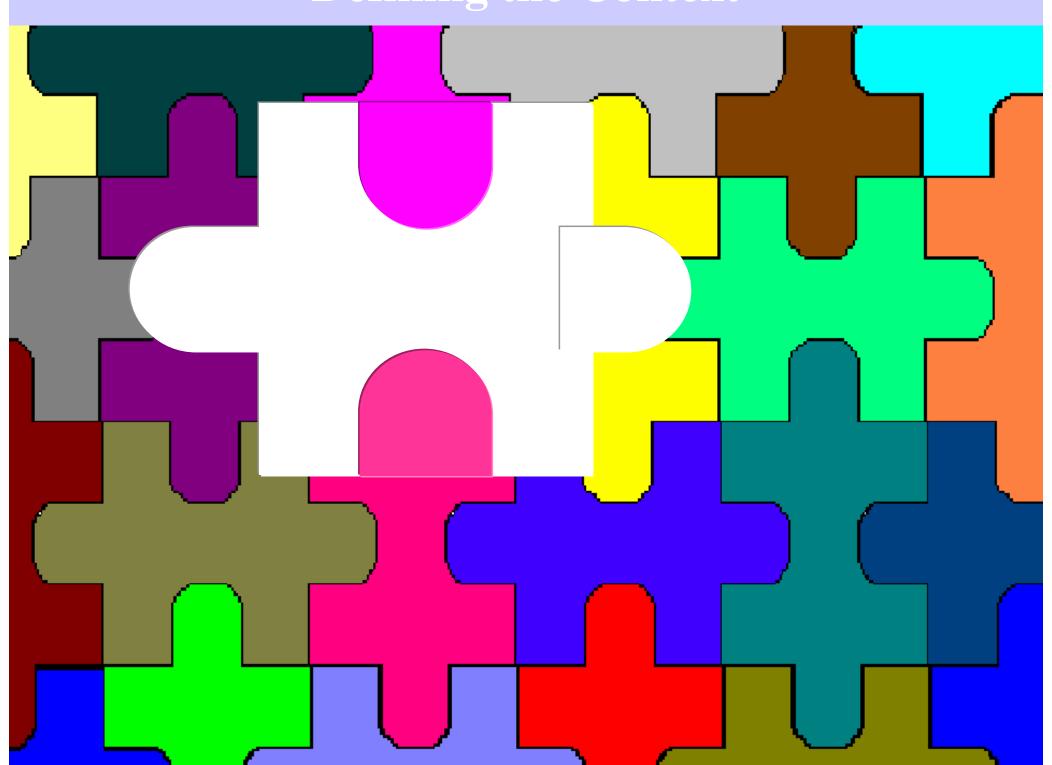
Getting the Word Out: Traditional U.S. Research Info Transfer Model—late 1990's

- Research results
- Journal article
- Fact sheet
- Searchable web database

What about context & <u>other</u> communication channels?

(Define the) Context

- Frame the new result (in relation to the users' field of interest)
 - Scale dimension
 - Time dimension
 - Breadth of applicability
 - Relation to the "problem" boundaries
- Who has the responsibility to offer the new result in the appropriate context?
 - NOT the "customer"
 - Possibly NOT the PI


(Define the) Context (cont.)

Explain the result in relation to other research

(the OVERALL context)

- Confirming other work
- Broadening previous work under other operating or boundary conditions
- "Breakthrough" approach?

Defining the Context

Biodegradation Mechanisms

Typically Occurring with Enhanced In Situ Bioremediation of CAHs

CAH*	Aerobic Oxidation		Anaerobic Reductive Dechlorination		
	Direct	Cometabolic	Direct	Cometabolic	
PCE			Yes	Yes	
TCE		Yes	Yes	Yes	
DCE		Yes	Yes	Yes	
VC	Yes	Yes	Yes	Yes	
Trichloroethane		Yes		Yes	
Dichloroethane				Yes	
C. tetrachloride				Yes	
Chloroform		Yes		Yes	
Methylene chloride	Yes	Yes	Yes	Yes	

^{*}Chlorinated aliphatic hydrocarbons

Technology Information Program "Channels"

- 6-8,000 person mailing <u>keys</u>
- Exhibit booth -- 12-14 <u>remediation</u> conferences per year
- Hard copy publications and one-page fact sheets
- Technology News and Trends--6 page/bimonthly newsletter; hard copy and electronic
- Biannual CD ROM collection of all pubs to date

Technology Innovation Program "Channels" (cont.)

- Clean Up Information web site (clu-in.org)
 with >300 EPA and non-EPA pubs
- Tech Direct--22,000 person list serv of remediation professionals with 1-3 page summary of new documents/ training/ etc.
- Classroom training
- Internet seminars

Internet Seminars: A Cost-Effective Communication Tool

- Live, 2 hour seminar on technical topics related to contaminated site management
- Typical seminar is presented to 150-250 people from 25-30 states, and 5-10 int'l locations
- Generally 2-3 speakers/instructors, national technical and regulatory experts
- Presentation and supporting information mounted on web site
- Audio transmitted over the phone or the internet with live Q&A

Keys to Technical Information Dissemination

- "Getting the word out" is NOT the audience's problem
- Not all results are created equal
- Interpreting CONTEXT is a critical function
- Audience, audience, audience
- Successful info transfer requires thoughtful planning and execution
- Consider multiple channels

Workshop Contents

- State of the science of use of nanoparticles to remove contaminants from environmental media
 - Focus is on nanoscale zero-valent iron
 - Additional work with other nanoparticles such as dendrimers, nanoporous materials
- Several field studies
- Fate and transport of nanoparticles
- Legal/Regulatory/Policy issues
- Risk assessment and public communication

Charge to Participants "Homework"

- Exchange information
- Form partnerships to facilitate technology transfer and to collaborate on research
- Produce recommendations for future research