Roadmap to the 7 Steps of LTMO

Dave Becker US Army Corps of Engineers Hazardous, Toxic, and Radioactive Waste Center of Expertise

Credits

This presentation was largely prepared by Mindy Vanderford, PhD Groundwater Services, Inc.

Roadmap for Long-Term Monitoring Optimization Contributors: Carolyn Nobel, PARSONS John Anthony, Mitretek Dave Becker, USACE

Demonstration of Two Long-Term Monitoring Optimization Methods USEPA Office of Superfund Remediation and Technology Innovation

- Introduce language, concepts and methods central to LTMO
- Define steps common to LTMO analyses
- Determine if and when optimization is appropriate for your program

7 Steps of LTMO

Components of your Current Monitoring Program

- Conceptual Site Model
- Objectives
- Design of Monitoring Program
- Management Decision Rules

Conceptual Site Model

- Sources
- Analytes
- Matrices
- Potential receptors
- Regulatory framework
- Property use/community issues
- Assumptions/Uncertainties

Objectives

- Monitoring Objectives
 - Evaluate remedy effectiveness
 - Evaluate contaminant migration
 - Evaluate changes in natural resource
 - Comply with regulatory requirements

Understand your motivation

Design of Current Monitoring Program

- What data have been collected and why?
 - Analytical methods
 - Detection limits
- How are data collected?
- Where have data been collected?
- How have data been analyzed?
- How is the dataset managed?
- How much does this cost?
- Who is paying for this?

- Identify actions taken and criteria for actions taken.
- Have monitoring objectives been met?
- How has the monitoring program been altered through time and why.

Regulatory/Community Issues

- Is the site moving to a different regulatory status/phase?
- What are the long-term goals of property re-use?
- What is my current relationship with stakeholders?
- How can LTMO improve the current stakeholder relationship/property re-use?

7 Steps of LTMO

Acquire and Process Data

- Data acquisition and availability
- Data format
- Data reduction

- Site description/history
 - RFI, CSM, ROD
- Historical COC data
 - Investigation and monitoring reports
- Site hydrology/geology
 - RFI, CSM
- Cleanup Actions
 - May affect comparability of data
 - Nature of past actions and timing of actions
 - Before and after comparison

Checklist (Important stuff)

Well construction/completion intervals

Construction diagrams
Coordinates of the Sampling Points

Regulatory context, cleanup goals

Risk based goals

Location of potential receptors

Risk assessments

40 CF

Checklist (Useful stuff)

- Logistical and policy issues

 Stakeholders, property owners

 Site features

 Aerials, AutoCad, GIS base maps

 Historic hydrology
 Geochemistry
- Costs and budgets

Budget

\$\$\$

Data Format

Clean-up your data!

- Hunt, gather, beg, create
- Convert to electronic files
- Database format
- Identify spurious points/artifacts
- Data deficiencies?

Data Reduction

- Data Comparability
 - How are data flags handled?
 - Non-detect results
 - Dilution factors
 - Changes in Sampling Methods/Crew
 - Unusual Climatic Effects
- How are duplicates interpreted?
- Data consolidation

7 Steps of LTMO

Is my site a Candidate?

- Is the site investigation complete?
- Minimum Data requirements fulfilled?
- Remediation status consensus?
- Budget and labor considerations?

You won't have this site to investigate anymore

Is my site a Candidate?

- Is the site investigation complete and Conceptual Site Model complete?
 - Source identified?
 - Plume delineated (vertically and horizontally)?
 - COC's identified?
 - Hydrology known/modeling complete?

Is my site a Candidate?

tests

• Data requirements fulfilled?

- Temporal: > 4 to 6 sample

С events, 8 events suggested for Time significance for some statistical

Is my site a Candidate?

• Data requirements fulfilled?

С

- Spatial: > 6 to 15 monitoring locations
- Spatial: Coverage adequate vertically and horizontally
 - Multiple aquifers
- Housekeeping:
 data organized and complete

Is my site a Candidate?

 Remediation status confirmed?

 Stakeholders agree
 Intensive remedies completed
 No major pending changes
 Pump and Treat or Natural Attenuation remedies on-going

Things to consider

- Effort and budget to perform optimization
- Technical capabilities of team
- Resistance to implementation
- Potential benefits vs. cost
- Deficiencies in current monitoring program
- Likelihood of further remediation

7 Steps of LTMO

Evaluation Strategies

Qualitative

Quantitative

Evaluation Strategies

Qualitative evaluations based on professional judgment, intimate knowledge of site, decision rules, heuristic methods

Good News

Qualitative Evaluations

- Context specific, multiple factors, includes intuitive, less tangible information
- Good for including regulatory and community issues

Less-Good News

Qualitative Evaluations

- Problem if stakeholders do not agree
- Consultant dependent
- May not reveal data inadequacies, may carry over biases
- Specific personnel required

Evaluation Strategies

Quantitative evaluations based on statistical, mathematical, modeling or empirical evidence

Good News

Quantitative Evaluations

- Bring stakeholders together with quantitative analysis
- Specific justification for action
- Can highlight data deficiencies, mis-interpretations, uncertainty.

Less-Good News

Quantitative Evaluations

- More rigorous data requirements
- Cost
- Time and effort
- Technical expertise
- Junk in \rightarrow Junk out

7 Steps of LTMO

Choose LTMO Method

LTMO Methods

Choice should reflect:

- Balance qualitative and quantitative methods
- Time, effort, skill set and cost
- Stakeholder consensus
- Appropriate to size, complexity, dataset and risk of site

Choose LTMO Method

LTMO Team

- Geology/hydrology
- Statistical
- Data management
- Regulatory
- Chemistry

Choose LTMO Method

LTMO Methods

- Cost Effective Sampling
- Parsons Three Tiered
- MAROS (Monitoring and Remediation Optimization Software)
- GTS (Geostatistical Temporal/Spatial Optimization Algorithm)
- Mathematical Optimization Methods

7 Steps of LTMO

Perform Optimization

Expected Results

- Spatial Locations
 - Remove wells from program
 - Addition of wells to characterize high uncertainty
- Temporal Frequency
- Different results for different COCs
- Different results for different GW units

Perform Optimization

Bonus Results

- Change in site conceptual model
- Change in monitoring objectives
- Change in sampling or analytical methods
- Evaluate effects of remediation activities

Perform Optimization

- Small site, stakeholder agreement, uncomplicated hydrology and constituents
 - \$2,500 \$5,000
- Larger site, stakeholder skepticism, uncomplicated hydrology

- \$5,000 - \$15,000

>\$25,000

 Larger site, stakeholder hostility, complicated hydrology, multiple units, legal issues

7 Steps of LTMO

Assessment and Implementation

- Quantitative results must be reviewed qualitatively by project technical staff
 - Consider site hydrogeology
 - Consider recent and future changes
 - Production and land use
 - Impacts of climate, other factors
 - Qualitative review may "trump" quantitative
 - Cost savings review

Assessment and Implementation

- Implementing LTMO recommendations correctly
 - Future data collected so as to verify recommendations and/or adjust at 3-5 yr review

Temporal considerations

- If sampling frequency is lowered, stagger reduced sampling schedule among groups of wells to allow:
 - Continued capture of seasonal fluctuations
 - Inter-event times of sufficient variety to enable estimates of temporal correlations between sampling events

Assessment and Implementation

• Spatial considerations

- Redundant wells perhaps should not be abandoned
 - Sample at multi-year reviews to test whether the optimized locations are correctly estimating values at unsampled spots
 - Provides a natural and convenient source of 'verification' data – measurements used to 'verify' the LTMO predictions
 - Water level data

Other Considerations

- May need to adjust LTMO recommendations
 - Follow-up optimization efforts
 - Independent review of original LTMO
- Stakeholder review
- Vendor contracts/services

Other Considerations

- Flexible decision documents
- Periodic re-evaluation
 - Acquisition of statistically significant sample size
 - Change in well status (i.e. <MCL)
- Property transactions

We Can Do It

Costs

- Modification of documents
- Modify permits, and institutional controls
- Potential savings ~ \$750 per sample
 - Labor
 - Analytical
 - Data Management

7 Steps of LTMO

