Environmental

Training

To provide practical

solutions to protect human

SRP Mission:

science-based health

Heather Henry, Ph.D. **Superfund Research Program National Institute of Environmental Health Sciences (NIEHS)**

FRTR Fall Meeting November 8, 2022

https://www.niehs.nih.gov/research/supported/centers/srp/funding/index.cfm

SRP Funding Mechanisms Advertise in TechDirect Newsletter and Funding Opportunity Webinars

Multi-Project Centers (P42)

Designed to integrate basic and application-oriented research across disciplines:

- Biomedical and Environmental Science and Engineering research.
- Community Engagement, Research Translation, Data Science, and Training.

OPENING April 2023

Spring 2023 Webinar

Small Business Research Grants (SBIR) (R43-44 and SB1)

Commercializing technologies relevant to hazardous substance clean-up and monitoring.

OPEN

August 2022 Webinar

Individual Research Projects (R01)

Bioremediation and materials science grants for emerging contaminants and mixtures.

Closed 2020

Spring 2022 Webinar

Time-Sensitive Grants (R21)

Research on unpredictable events with a limited window to collect samples or data. **OPEN**

Occupational Training (R25)

Emerging issues in EHS training. Closed 2020

ViCTER (R01) Virtual Consortium for

Translational Transdisciplinary Environmental Research for cross-disciplinary research. **OPEN**

Conference Grants (R13)

Funding for conferences related to SRP mandates. **OPEN**

Supplement Awards

Opportunities limited to current grantees for trainee externships, diversity supplements, and technology transfer for SBIRs etc.

ites of Health man Services

Who We Fund...

Search Grantees (by area of research, key words, site work)

Information on locations of hazardous waste sites and SRP grantees is <u>available for download!</u>

SRP Research Grant Portfolio and NIH Grant Process

Investigator Initiated

- Stakeholder-input for Funding Announcements
- Applicant has flexibility to prioritize aims they think are important
- Working on Superfund Site is not required

Encourage Practical, Sustainable Approaches

- Low carbon footprint, reduced waste generation, practical for adoption by impacted communities, resilient to climate change
- Cost competitive (review element for SBIRs)

Promising *Innovative* Technologies

 Integrating omics to optimize bioremediation, machine learning to tailor design of novel sorbents/filters, nanotechnology-based sensors and treatment approaches

150 Projects

Research Translation: communicating and facilitating the application of grantee accomplishments

Technology Readiness and Research Translation

Technology Readiness Level

- SARA Mandates say "basic research and training"
- Generally between TRL 1 and TRL 6

Research Translation: All applicants required to include plans for moving science to end-users

- Identifying industry / government liaison to advise during technology development
- Communication strategies
 - Publications
 - Other media (web-based, flyers, press releases)
- Gaining access to a site or site samples
- Data sharing requirement

Additional Research Translation Efforts

- SRP Centers Research Translation / Data Sharing
 - Research Translation Coordinators: tailor a plan for each project to establish partnerships with government, technology transfer, and broad communication plans https://tools.niehs.nih.gov/srp/outreach/outreach2.cfm
 - Data Management and Analysis Cores: identify appropriate database / sharing platforms for research data
- Small Business Grantee Opportunities
 - Application Assistance Program help in getting application in for SBIR
 - I-Corps (customer discovery) supplement to grantees
 - TABA Funding technical and business assistance consulting
 - Commercialization Readiness Program (Ph II "plus") -\$200K for 2 years manufacturing / production to prepare for scale-up

Limitations - Grants are not "deliverables-based"

Funding for Tech Transfer – Generally, must use funds already committed to the grant (no new \$)

Tracking Period – limited annual reporting, no tracking permitted after grant ends

Multi-Project Research Translation Coordinators
Example: Connecting Vapor Intrusion Modeling
Expertise with Rapid/Mobile Detection Device at Reg 9
Plume

- UK SRP Center and <u>Entanglement Technologies</u> worked together with EPA Region 9 to merge an innovative rapid TCE detection technology with conceptual modeling expertise.
- Partnership resulted in <u>publication</u> on alternative pathways for intrusion; improvements in portability of the real-time TCE VI monitor prototype.

RISKCLearning

Research Translation and Technology Transfer – What We Do...

Promoting Awareness of Grantees and Their Successes

Monthly Research Brief (and podcast)

- Improving How Microbes Break Down PFAS
- Sampling Device May Predict Methylmercury Accumulation in Wetlands

RISK e-Learning Webinar Series

- Climate Change and Health
- Risk Communication to Reduce Exposures and Improve Health

Science Digest: Quarterly Summary of Findings

- Features "Technology Profile" overview of innovative remediation or detection device
- Recent Feature: QBI machine learning water sensor

https://www.niehs.nih.gov/research/supported/centers/srp/science_digest

Progress in Research Webinars: Engaging with end-users early in research process

Semprini (OSU): Bacteria encapsulated in hydrogel beads

Spring 2023: Featuring <u>newly funded Multi-project Centers</u> (P42s)!

CLU-IN

UNM SRP Center researchers address metals exposure on Tribal lands

See all: https://www.niehs.nih.gov/research/supported/centers/srp/events/inprogresswebinar/index.cfm

 Virtual Technology Fairs: Showcase of Small Business Grantees – 5 min webinar briefings with end-users, archived on YouTube (Dec 2020)

Amplifying grantee messages, publications, press releases through SRP and NIEHS Twitter Accounts

https://twitter.com/srp_niehs?lang=en

Sending publications of interest to OSRTI for consideration in their communication products (TINS)

https://clu-in.org/products/tins/

Steam Vapor Extraction

Technology Transfer Successes

35 Year Anniversary

Sedimite and Rembac

New Covid Mask

MyExposome Personal Monitor

ElectraMet Lead Removal

NanoAffix Lead Sensor

Public Health Impact Stories:

Picoyune Mercury Sensor

https://www.niehs.nih.gov/research/supported/centers/srp/phi/index.cfm

Microporous Polymeric Membrane

•Antiviral Mask and Antiviral Filter Made from a Breathable

•Number: 63/034,057, Year: 2021, Authors: Bhattacharyya, D.,

R. Mills, Y. Wei, J.T. Hastings, T.D. Dziubla, R.J. Vogler

Patents for SRP-related work

SRP Spin-Off Companies

Picoyune (Jay James)

Technology:

Gold nanoparticle-based portable mercury analyzer for on-site measurement of soil, water, and air

Basic Research:

UC Berkeley SRP Center

Small Business Grant:

- R44ES032383
- SBIR Phase II: 2022-2023

Statera Environmental (Damien Shea)

Technology:

Composite Integrative **Passive Sampler to** measure thousands of organic chemicals in water

Basic Research:

NCSU SRP Center

Small Business Grant:

- R43ES030662
- SBIR Phase I: 2019-2020

https://statera.org/

MyExposome (Kim Anderson)

Technology:

- Silicone wristband personal passive samplers
- Untargeted analysis of thousands of chemicals

Basic Research:

Oregon State University SRP Center

SRP Spin-Off Companies, continued

Glycosurf (Chett Boxley)

Bluegrass Advanced Materials (Angela Gutierrez)

RemBac (Craig Amos)

Technology:

- Microbially produced surfactants to filter out metals from acid mine drainage
- Basic Research:
- Arizona SRP Center

Small Business Grant:

- R44ES031897
- SBIR Phase II: 2022-2023

Technology:

 "Smart" temperature responsive, polymer flocculant to remove PFAS from contaminated water

Basic Research:

UK SRP Center

Small Business Grant:

- R43ES032380
- SBIR Phase I: 2020-2021

Technology:

 Activated carbon pellets w/ microorganisms for contaminated sediments

Basic Research:

UMBC R01 (Ghosh)

Small Business Grant:

- R43ES032365
- Phase I: 2020-2021

http://www.bgamaterials.com/

https://www.rembac.com/

Economic Savings: 5 SRP-Funded Technologies, Over \$100 Million Savings

UC Berkeley (Udell)

- Steam injection for groundwater remediation
- Total cleanup decreased from 3,000 years to 4 years
- Resulted in an estimated \$50 million in savings

U Arizona (Brusseau)

- New methods to predict contaminant movement; evaluate effectiveness of remediation
- Decreased work needed at U.S. DOE
 Hanford site in Washington state, saving estimated \$6.35 million

UC Davis (Scow)

- Enhancing bioremediation of MTBE in groundwater
- Decreased contaminant concentration from >100,000 ppb to <1 ppb in North Hollywood, CA
- \$14–\$21 million in savings; allowed re-injection of water

UW (Gordan, Newman)

- Phytoremediation with hybrid poplar and cypress trees
- \$8.5–\$10.5 million in savings at Undersea Naval Warfare Center, Keyport, WA
- **\$2.4 million in savings** at Argonne National Laboratory, Batavia, IL

Economic Savings: 5 SRP-Funded Technologies, Over \$100 Million Savings (continued)

UMBC (Ghosh, Sowers)

- Activated carbon pellets to sequester and biodegrade PCBs
- Estimated \$22 million saved compared to traditional sediment removal in Middle River, Maryland
- Collaboration led to additional R01 and small business funding

- It takes a village...
 - Multiple funding sources
 - Multiple students, staff, different skill sets from lab vs market
 - Willing / motivated partners at contaminated sites
 - Lots of time (an entire career??)

https://www.niehs.nih.gov/research/supported/centers/srp/phi/index.cfm

How to Better Facilitate Technology Development? (FRTR Spring 2021)

Funding Opportunities

 Need for mechanisms for funding technology development, pilot testing, and application

Site Materials and Site Access

- Matching technology developers with the most ideal test sites / sample materials
- Establishing more "study" sites?
- Incentivize trying out new technologies at sites

Need for information/data sharing between researchers and stakeholders

- Coordinating / facilitating connections between researchers and stakeholders at an early stage of research
- Finding ways to "package" information about ongoing work without being overwhelming - leverage existing information pipelines (TINS)
- Leverage existing data about tested technologies (avoid reinventing the wheel)

Need for **mentoring** to take the next step for technology transfer

- Effectively engage stakeholders to facilitate research translation early on in development
- Seek opportunities for **cross-training younger generation** to learn more about real world sites (and vice versa...cross-training not-so-young generation)

EnChem Engineering PFAS at JBCC

U Arizona Metal Tolerant Plants

Thank you!!

Questions:

Heather Henry, PhD 919-609-6061 heather.henry@nih.gov

Please Contact <u>SRPinfo@nih.gov</u> to receive monthly Research Briefs, quarterly Science Digests, etc.

SRP: Sites Where We Work

Information on locations of hazardous waste sites and SRP grantees is <u>available</u> for download!

Learn More:

Learn more about SRPfunded research through NIH
RePORTER at
https://reporter.nih.gov/

And by using the SRP Search Tools (projects, people, publications, datasets)
https://tools.niehs.nih.gov/srp/search/index.cfm

People

SRP Across the Country

SBIR Successes

- <u>ElectraMet</u> (formerly PowerTech) patented INCION technology to preferentially remove metals from water. It uses an active filtration process with proprietary carbon electrodes.
- Cyclopure commercialized DEXSORB+, made from renewable cyclodextrin, to remove PFAS from drinking water via dual mechanisms of hydrophobic and electrostatic interactions. Recent release of table-top water pitcher for PFAS.

ElectraMet's technology removes metals from drinking water

Awarded new SB1 SBIR/STTR
Commercialization Readiness Pilot
(CRP) Program Technical Assistance

- Enchem developed a two-phase process to remove PFAS from soil and groundwater using two proprietary technologies: Extra Contact Technology to flush PFAS from media, and a chemical OxyZone to destroy them.
- <u>AxNano</u> patented RemRx CRI, a controlled release injectant for sustained ISCO reagents directly into contaminated area with one application. They are also developing smart PFAS-collectors for high-throughput detection.

SBIR Successes

- NanoAffix Science, LLC developed a new portable device to detect lead in tap water in real time. The team launched its first commercial device, called NanoAquaSense.
- Ondavia deployed their easy-to-use water testing technology at NIH campus in Bethesda, Maryland. The system uses spectroscopy and nanotech for rapid and inexpensive laboratory-grade chemicals testing in water.
- Microbial Insights is commercializing its big data and molecular tools that monitor the biologically-based break down of environmental contaminants.

NanoAffix's device connects via Bluetooth to an app

SBIR/STTR Funding Opportunity Overview (August 25, 2022)

• EPA, NIEHS, NSF, NOAA

Agency NIEHS Summary Table

Program name	NIEHS SBIR/STTR
URL	General NIEHS: https://www.niehs.nih.gov/funding/grants/mechanisms/sbir/index.cfm Superfund (Remediation / Detection): https://www.niehs.nih.gov/research/supported/centers/srp/funding/hwaerp/index.cfm
Contact information	Dan Shaughnessy (General NIEHS) Heather Henry (Superfund)
Next deadline	Sept 5 th , Jan 5 th , May 5 th
Mechanisms funded	Phase I, Phase II, Direct to Phase II, Fast Track SBIR and STTR* * Note Superfund does not offer STTR
Amount awarded (Total Direct Costs, Indirect Costs, Fees)	Phase I = \$173,075 – \$275,766 Phase II = \$1,153,834 - \$1,838,436

NIEHS SBIR/STTR Program – Funding Mechanisms

Phase I = \$173,075 - \$275,766 Phase II = \$1,153,834 - \$1,838,436