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Abstract: Cometabolic bioremediation is probably the most under appreciated bioremedia-

tion strategy currently available. Cometabolism strategies stimulate only indigenous microbes

with the ability to degrade the contaminant and cosubstrate, e.g., methane, propane, toluene,

and others. This highly targeted stimulation insures that only those microbes that can degrade

the contaminant are targeted, thus reducing amendment costs, well and formation plugging,

etc. Cometabolic bioremediation has been used on some of the most recalcitrant contami-

nants, e.g., PCE, TCE, MTBE, TNT, dioxane, and atrazine. Methanotrophs have been dem-

onstrated to produce methane monooxygenase, an oxidase that can degrade over 300

compounds. Cometabolic bioremediation also has the advantage of being able to degrade

contaminants to trace concentrations, since the biodegrader is not dependent on the contam-

inant for carbon or energy. Increasingly we are finding that in order to protect human health

and the environment that we must remediate to lower and lower concentrations, especially for

compounds like endocrine disrupters, thus cometabolism may be the best and maybe the only

possibility that we have to bioremediate some contaminants.
1 Introduction

Cometabolism is the process by which a contaminant is fortuitously degraded by an enzyme or

cofactor produced during microbial metabolism of another compound. Typically, there is no

apparent benefit to the microorganism involved. Bioremediation strategies that use electron

donors that only stimulate a specific group of microorganisms that can degrade the con-

taminants of concern are ideal for many applications. Many electron donors used as amend-

ments for bioremediation can broadly stimulate many members of the indigenous microbial

community, most of which do not have the ability to degrade or completely degrade the

contaminants of concern. Indeed, this often creates problems excess biomass (e.g., plugging

the aquifer around the injection site), incomplete degradation of contaminants, transforma-

tion of contaminants to more recalcitrant or toxic daughter products, higher costs (amend-

ment/contaminant), and inability of the amendment to stimulate biodegradation at low

contaminant concentrations. Cometabolic bioremediation enables remediation strategies

that stimulate biodegradation of the contaminants at contaminant concentrations that are

way below the concentration that could be of carbon or energy benefit to the biodegrader.

Thus cometabolic bioremediation has the added advantage of allowing scrubbing of environ-

mental contaminants down to undetectable concentrations, e.g., parts per trillion. Cometa-

bolic bioremediation has been applied both aerobically and anaerobically to a wide variety of

contaminants in different environments. The first mention of cometabolic bioremediation was

by Wilson and Wilson (1985) and was later defined by McCarty (1987). Cometabolic biore-

mediation has been used in the field for more than 20 years on some of the most recalcitrant

contaminants, e.g., chlorinated alkenes, PAHs, halogenated aliphatic and aromatic hydrocar-

bons, MTBE, explosives, dioxane, PCBs, and pesticides.

Microorganisms are versatile in their ability to exist in a variety of habitats and live in

hostile environments having a wide range of pH, temperature, heavy metal concentrations,

oxygen concentrations, barometric pressures, salinity, and radiation. Under these diverse

conditions a number of microbial types have been isolated that cometabolize contaminants

and their daughter products. Ensley (1991) demonstrated a linkage between TCE degradation

and aromatic metabolism in Pseudomonas cepacia G4, P. mendocina and P. putida. Ensign et al.

(1992) reported that pure cultures of Xanthobacter sp. cometabolized TCE with the utilization
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of propylene as a substrate using the enzyme alkene monooxygenase. It is well recognized that

TCE and other chlorinated aliphatic compounds can be degraded by selected methanogens

(Bouwer and McCarty, 1984), methanotrophs (Little et al., 1988), species of Pseudomonas

(P. cepacia, P. mendocina, and P. putida), and nitrifiers (Hyman et al., 1988; Vannelli et al.,

1990) capable of degrading aromatic compounds (Nelson et al., 1988). Additionally, aerobic

conditions do not appear to support the formation of undesirable metabolites, such as c-DCE,

t-DCE, or VC that are dehalogenation products of anaerobic degradation of TCE. Mahendra

et al. (2007) demonstrated that monooxygenase-containing bacteria could degrade 1,4-diox-

ane. Methyl tert-butyl ether (MTBE) has also been remediated cometabolically (Chen et al.,

2006), as has TNT (Yasin et al., 2008), PCBs (Lajoie et al., 1994), and atrazine (Ghosh and

Philip, 2004) (> Table 1).

The aerobic cometabolic biodegraders are dependent upon oxygenases, e.g., methane

monooxygenase (MMO), toluene dioxygenase, toluene monooxygenase, and ammonia

monooxygense. These enzymes are extremely strong oxidizers, e.g., methane monooxygenase

is known to degrade over 300 different compounds. However, like any bioremediation process

the proper biogeochemical conditions are necessary to maximize and maintain biodegrada-

tion, e.g., maintaining oxygen levels or other terminal electron acceptors that the cometabolic

biodegrader is dependent on (Hazen, 1997 and >Chapter 13, Vol. 4, Part 2; >Chapter 92,

Vol. 5, Part 6). In addition, co-metabolic biostimulation may require pulsing of electron donor

or electron acceptor to reduce competitive inhibition between the substrate the microbe can

use and the contaminant. Pulsing of methane was found to significantly improve biodegrada-

tion of TCE rates by methanotrophs (Hazen et al., 2009). It has also been found that significant

background biodegradation reactions can occur during injection of terminal electron

acceptors like oxygen. Enzien et al. (1994) demonstrated that in a bulk aerobic environment
. Table 1

Cometabolic bioremediation substrates, enzymes, contaminants

Cosubstrates

Methane,

Methanol,

Propane,

Propylene

(aerobic)

Ammonia,

Nitrate

(aerobic)

Toluene,

butane,

phenol, citral,

cumin

aldehyde,

cumene, and

limonene

(aerobic)

Methanol

(anaerobic)

Glucose,

Acetate,

Lactate,

Sulfate,

Pyruvate

(anaerobic)

Enzymes

(microbes)

Methane

Monooxygenase,

Methanol

Dehydrogenase,

Alkene

monooxygenase,

catechol

dioxygenase

(Methylosinus)

Ammonia

Monooxygenase

(Nitrosomonas,

Nitrobacter)

Toluene

Monooxygenase,

Toluene

Dioxygenase

(Rhodococcus,

Pseudomonas,

Arthrobacter)

Alcohol

Dehydrogenases

(Pseudomonas,

Streptomyces,

Corynebacterium)

Dehalogenase,

AtzA,

Dichloromethane

Dehalogenase

(Dehalococcoides,

Methanogens,

Desulfovibrio,

Clostridium,

Geobacter,

Clavibacter)

Contaminants TCE, DCE, VC, PAHs,

PCBs, MTBE,

creosote, >300

different

compounds

TCE, DCE, VC,

TNT

TCE, DCE, VC,

1,1-DCE, 1,1,1-

TCA, MTBE

PCE, TCE, DCE,

VC, Hexachloro-

cyclohexane

BTEX, PCE, PAHs,

Pyrene, Atrazine,

TNT, etc.
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being injected with methane and air that significant amount of reductive dechlorination of

PCE to TCE could occur in anaerobic niches in the aquifer sediment. Rates of PCE and TCE

oxidation are inversely different depending on the number of Cl (> Fig. 1).

Given the diverse body of literature on cometabolic bioremediation processes we will focus

in detail on the two groups that have been most well studied, i.e., methanotrophs and

ammonium oxidizers.
2 Methanotrophs

Methanotrophs, methane-oxidizing bacteria, oxidize methane via a series of enzymes that are

unique to this group (Koh et al., 1993). The primary enzyme in this oxidation chain is

methane monooxygenase. Methane monooxygenase is an extremely powerful oxidizer, thus

giving it the capability of oxidizing a wide variety of normally recalcitrant compounds

including TCE (Cardy et al., 1991). Wackett (Newman and Wackett, 1991; Tsien et al., 1989)

and others (Chaudhry and Chapalamadugu, 1991; Fogel et al., 1986; Little et al., 1988; Wilson

and Wilson, 1985) demonstrated that soluble methane monooxygenase (sMMO) induces

formation of TCE-epoxide from TCE. TCE-epoxide is extremely unstable and therefore

spontaneously breaks down to simpler compounds like formate, etc. All of the daughter

compounds are either unstable or small and easily metabolizable compounds, thus making

the final and almost immediate end products of TCE-epoxide formation, carbon dioxide and

chloride salts, unlike anaerobic dechlorination which can stall at daughter products like vinyl

chloride which are more toxic than the original contaminant, e.g., PCE and TCE (> Fig. 2).

Methanotrophic bacteria (methanotrophs) are bacteria that use methane as a sole source

of carbon. The first enzyme involved in the oxidation of methane to methanol by methano-

trophs is methane monooxygenase (MMO). Two forms of MMO have been reported. Soluble

methane monooxygenase (sMMO), found mainly in the cytoplasm and particulate methane
. Figure 1

Aerobic and anaerobic biodegradation rates.



. Figure 2

Aerobic and anaerobic cometabolic pathways.
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monooxygenase (pMMO) which is associated with the cell membrane. Studies related to these

two enzymes have mainly been studied in two methanotrophs namely,Methylococcus capsulate

(Bath) andM. trichosporiumOB3b. Numerous groups have studied sMMO in great detail with

regard to isolation and characterization as well as crystal structure. Since pMMO is membrane

bound this enzyme losses activity upon lysis making it difficult to isolate and purify resulting

in fewer details regarding this enzyme. The two enzymes can coexist in methanotrophs;

however, their activities have been directly reported to be dependent on the copper ion to

biomass ratio inM. capsulate (Bath). A low copper ion to biomass ratio expresses sMMOwhile

a high copper ion to biomass ratio expresses pMMO (Stanley et al., 1983). While pMMO is

found in most methanotrophic bacteria sMMO is present only in a few select methanotrophs.

Both MMOs oxidize methane to methanol and are capable of co-metabolizing chlorinated

aliphatic hydrocarbons namely, chloroform, dichloromethane, trans-dichloroethene, cis-1,

2-dichloroethene, 1,1-dichloroethene, trichloroethene at various rates and to different extents.

Therefore, methanotrophs are a useful tool for commercial purposes mainly cleanup of sites

contaminated with toxic pollutants. However, sMMO being nonspecific has a broader sub-

strate specificity in comparison to pMMO, some substrates like cyclohexane or naphthalene

cannot be oxidized by pMMO, and both enzymes do not oxidize perhloroethylene. Methano-

trophs have also been reported to be useful for production of bulk chemicals and as methane

sinks (Oremland and Culbertson, 1992). Mixed cultures expressing pMMO have shown to

degrade t-DCE, VC, c-DCE, TCE, and 1,1-DCE. Transformation of t-DCE and VC by pMMO

was 20 times greater than those reported for sMMO, while transformation of the other three

compounds was either similar or less indicating the importance of this enzyme over sMMO

for bioremediation.
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One of the many uses of methanotrophs has been in the bioremediation of trichloroethy-

lene (TCE), which is most commonly found in groundwater along with other halogenated

compounds. The first product formed in the oxidation of TCE is an epoxide which is then

converted to glyoxylic acid with chloride being released. Glyoxylic acid is then oxidized to

carbon dioxide. Although TCE is known to be degraded by several other bacteria, e.g., various

species of Pseudomonas, containing oxygenases, the rate of degradation by methanotrophs

expressing sMMO is many times faster than pMMO and other oxygenases making it favorable

for use in bioremediation. For efficient bioremediation it is important to optimize enzyme/

enzymes activity responsible for the transformation, as well as to maintain the activity for

extended period of time. This has been studied in detail for M. trichosporium OB3 by Sayler

et al. (1995). Their study showed that specific sMMO activity was directly proportional to the

concentration of dissolved methane. Addition of formate (20 mM), significantly increased

sMMO activity. Nitrate, phosphate, iron, and magnesium also had remarkable effect on

growth as well as sMMO activity. Addition of vitamins also effected sMMO activity however,

excessive vitamins proved to be harmful. Such studies are necessary and prove useful when

designing a bioremediation process.

sMMO from M. capsulatus (Bath) and M. trichosporium OB3b was shown to consist of

three components: protein A, a hydroxylase made up of three subunits a, b, g, of molecular

masses 60, 45, and 20 kDa, respectively, protein B which is 16 kDa, a regulatory protein and

protein C 39 kDa, a reductase (Paulsen et al., 1994). The crystal structure of sMMO hydroxy-

lase has also been determined (Rosenzweig et al., 1993) (> Figs. 3 and > 4). In both organisms,

the genes encoding for soluble methane monooxygenase enzyme complexes have been found
. Figure 3

Methane monooxygenase 3D molecular structure.



. Figure 4

MMO reaction site.

Cometabolic Bioremediation 7 2511
to be clustered on the chromosome. The complete DNA sequences of both gene clusters have

been determined and they show considerable homology (Murrell, 1992). Detailed studies of

the genes encoding sMMO, the DNA sequence has led to the development of sMMO probes

which have been used to detect MMO gene-specific DNA and methanotrophs in mixed

cultures and in natural environmental samples (Hazen et al., 2009). The genes for Protein B

and Protein C of Methylococcus have been expressed in E. coli and the proteins obtained were

functionally active. Cloning of sMMO genes has led to construction of sMMO mutants of

M. trichosporium OB3b.

Anderson and McCarty (1997) have reported higher yields of t-DCE and VC degradation

by methanotrophs expressing pMMO as compared to sMMO. Also the fact that pMMO are

present in most methanotrophs, it seems logical to develop systems that can enhance this

activity for the purpose of treatment of sites contaminated with these compounds. Although

sMMO and pMMO are known to coexist in methanotrophs, the fact that pMMO is membrane

bound has made it difficult to purify this enzyme unlike sMMO and perform detailed studies

like sMMO. Several groups have attempted and are still pursuing this aspect of pMMO and to

date only a few reports are available.

Isolation of active pMMO frommethanotrophs has been difficult since it loses activity once it

has been separated from the membrane. The loss of pMMO activity has been reported to be

overcome by addition of a non-ionic detergent followed by removal of the detergent and

reconstitution of lipid vesicle. Activity of pMMO in the membrane fraction was also stabilized

by increasing the concentration of copper in growth medium. Other factors favoring pMMO

activity were, increased iron and copper concentration, maintaining the pH of buffer at 7.0 and

anaerobic conditions during solubilization. Addition of copper ions has resulted in enhanced

pMMO activity however, it has not prolonged the activity nor does it reactivate the enzyme once

activity is lost (Zahn et al., 1996). The isolation and characterization of pMMO from

M. capsulatus (Bath) has been reported by Nguyen et al. (1998) They have obtained active

stable pMMO from M. capsulatus (Bath) by maintaining high copper levels and methane
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stress conditions in growth medium. Membrane solubilization was achieved under anaerobic

conditions and addition of dodecyl beta-D-maltoside. The active extract was then purified by

chromatography. By switching the growth conditions to favor pMMO activity over sMMO the

same group has reported three polypeptides of 46, 35, 26 kDa and has shown a trinuclear

copper center in pMMO by EPR. They have reported pMMO to be copper requiring and

sensitive to dioxygen similar to the results of Zahn et al. (1996). The switch between sMMO

and pMMO gene expression has been suggested to involve a common regulatory. Recent

report by Chan et al. (2004), has shown pMMO from M. capsulatus (Bath) to be a copper-

containing three-subunit enzyme. The role of copper in pMMO has been reported to be in the

active site of pMMO rather than a structural one.
3 Ammonium Oxidizers

Nitrification is the bacterial mediated process in which ammonia is oxidized sequentially to

nitrite then to nitrate. In soils and fresh and saline waters, ammonia is oxidized to nitrite

by nitrite-oxidizing bacteria such as the chemolithoautotrophic bacterium, Nitrosomonas

europaea. Nitrite is oxidized to nitrate by nitrate-oxidizing bacteria such as Nitrobacter agilis

andN. winogradskyi (Fliermans et al., 1974). Nitrifying bacteria are ubiquitous components of

the soil and sediment microbial populations. Their activities are stimulated in agricultural

soils following the application of ammonia or urea based fertilizers.

The oxidation of ammonia to nitrite by Nitrosomonas europaea is initiated by the enzyme,

ammonia monooxygenase (AMO). Because of the broad substrate range of AMO (Arciero

et al., 1989), nitrifiers such asN. europaea can be used in the bioremediation of contaminated

soils, sediments, and groundwaters (Yang et al., 1999). AMO catalyzes the oxidation of

ammonia to hydroxylamine with is subsequently oxidized to nitrite (NO2) by hydroxylamine

oxidoreductase (Wood, 1986) with the release of four electrons. Two of the electrons are

transferred to AMO in order to activate the O2 and maintain a steady state for ammonia

oxidation. AMO in Nitrosomonas europaea also catalyzes the oxidation of several alternate

substrates including hydrocarbons and halogenated hydrocarbons (Rasche et al., 1990). These

oxidations require a reductant which can be supplied by the simultaneous oxidation of ammonia.

Both CH4 and C2H4 competitively inhibit ammonia oxidation by N. europaea, since it

appears that these compounds bind predominantly to the same binding site as ammonia

(Keener and Arp, 1993). The competitive character of the inhibition of CH4, C2H4, C2H6,

CH3Cl, and CH3Br is supported by the optimal N2H4 requirements that decrease with

increasing concentrations of ammonia. Thus it is not likely that the stimulation of TCE

degrading bacteria of the genus Nitrosomonas would occur with the injection of methane or

other substrates that were competitively inhibitory to the AMO enzyme. Under bioremedia-

tion techniques that injected methane, a loss of the Nitrosomonas population that has the

ability to degrade TCE would be inhibited. Such a phenomenon was observed through the use

of species-specific fluorescent antibodies (Fliermans et al., 1994; Hazen et al., 1994).

A movie which can be downloaded at http://esd.lbl.gov/people/thazen/Videos/MMO%

20Movie.mpg shows how methane monooxygenase interacts with TCE to form TCE-epoxide

which spontaneously breaks down to CO2 and Cl.

The following are general lectures on Bioremediation:

http://www.learningagents.ca/MEIA/

http://www.youtube.com/watch?v = MT0qY3_n1kI&fmt = 18

http://esd.lbl.gov/people/thazen/Videos/MMO&percnt;20Movie.mpg
http://esd.lbl.gov/people/thazen/Videos/MMO&percnt;20Movie.mpg
http://www.learningagents.ca/MEIA/
http://www.youtube.com/watch?v=MT0qY3_n1kI&fmt=18
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4 Research Needs

Cometabolic bioremediation is extremely under appreciated as a bioremediation strategy,

though it has been used for an extremely wide variety of contaminants in different environ-

ments with different cosubstrates. Much more research needs to be done onmodeling life cycle

costs of various remediation strategies, including treatment trains and grading into natural

attenuation or intrinsic bioremediation. These models need to be tested and verified in full-

scale deployments. Cometabolic processes quite often can easily be graded into natural

attenuation, e.g., air injection alone at sites with methane or other cometabolic substrate to

increase degradation rate and transition into a stable aerobic or microaerophilic environment

that can sustain natural attenuation of any residual contaminant. Research on bioaugmenta-

tion strategies using cometabolic biodegraders and synthetic biology to produce unique, high

rate and highly specific biodegraders could vastly improve our environmental stewardship in

the future.
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