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Ways to Skin a CatWays to Skin a Cat

• Optimization techniques for LTM have 
advanced over last several years
– Improved mathematics
– Increased complexity
– Combination of statistical & physical data

• Highlight some alternate methods
– Genetic algorithms
– Kalman-type filtering, updating
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A Question of TradeoffsA Question of Tradeoffs

• Computational horsepower
– More analysis time, computer power often required
– More complex models, greater reliance on advanced 

numerical methods
• More complex data needs

– “Garbage in, garbage out” principle
– More kinds and quantities of data typically needed
– Needed information not always available
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It’s an Empirical ThingIt’s an Empirical Thing

• No optimization possible without data
– Moving from simpler to more complex 

techniques exposes a dilemma
– Advanced approaches may look ‘slick,’ but 

without extra data, results may be no better
• Determine which data inputs are crucial

– Forward thinking: how can this data be 
collected in the future?



5

MultiobjectiveMultiobjective Groundwater Groundwater 
Monitoring DesignMonitoring Design

• Patrick Reed and Venkat Devireddy
– Department of Civil and Environmental Engineering 
– The Pennsylvania State University

• Contact info: preed@engr.psu.edu
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Genetic Algorithm BasicsGenetic Algorithm Basics

• Genetic algorithms search among all possible 
monitoring plans
– Create an initial “population” of sampling plans
– Sampling plans are represented as a string binary digits

• 1 – ith well sampled
• 0 – ith well not sampled

– Judge each sampling plan based on how well it satisfies 
monitoring objectives

• Plans that satisfy design objectives are “highly fit”
• Have higher likelihood of mating and passing traits

– Sampling plans undergo Darwinian “natural selection” 
until the best set  of plans are evolved

0 1 00
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– Selection
– Measure of the fitness of string
– Fitness is rated in terms of the objective functions
– Population members compete to mate & pass traits

– Mating

– Mutation

How do How do GAsGAs work?work?
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Multiobjective EvolutionMultiobjective Evolution

• The Nondominated Sorted Genetic Algorithm-II:
– Population classified into fronts using non-dominated 

sorting
– Better ranking = Higher likelihood of passing traits
– Entire tradeoffs evolved in single run
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Case Study: Enumerated Case Study: Enumerated 
TradeoffTradeoff

• Two-Objectives:
– Minimize Cost
– Minimize Relative Mapping 

Error (termed SREE)

• 220 possible designs
• Evaluated using a 

nonlinear least squares 
interpolation

• Best published result
– Reed et al. (2004) WRR
– 38000 evaluations 
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Case Study: Efficiency of New Case Study: Efficiency of New 
ToolsTools

• Results for 50 trials (using interactive archiving)
– Reduced solution time from hours to seconds
– New tool is up to 90% more efficient

2540074400Max. no. of design 
evaluations

799239889Avg. no. of design 
evaluations

140016800Min. no. of design 
evaluations

ε-
NSGA2 
(New 
Tool)

Reed et 
al. 2003
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Case Study: Typical ResultCase Study: Typical Result
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Adaptive Environmental Monitoring Adaptive Environmental Monitoring 
System (AEMS)System (AEMS)

– Under development at RiverGlass Inc., 
Champaign, IL

• Software development company launched by the 
University of Illinois 

• Project lead: Barbara Minsker, PhD 
minskerconsulting@insightbb.com

– Beta testing of AEMS expected to begin in 
late Summer 2005

• Completed functionality available now on a project 
basis – contact Dr. Minsker for more information
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AEMS CapabilitiesAEMS Capabilities
– Build data-driven trend models based on historical 

data (geostatistical or analytical models)
– Assess new data in real time to

• Identify significant deviations from previous trends (spatial or
temporal), providing automated alerts

• Identify locations/times where additional data would be most 
beneficial to reducing risks

– Identify temporal and spatial redundancies in existing 
monitoring regimes
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Redundancy Analyses with AEMSRedundancy Analyses with AEMS

• Method considers
– Tradeoffs among multiple objectives (e.g., 

cost and error) with mathematical optimization
– Uncertainty in identifying robust designs
– Temporal and spatial redundancy 

simultaneously
• Applied at 2 BP sites and 1 DOE site

– 22-36% redundancy found in well sampling 
plans
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Optimization of Large Scale Optimization of Large Scale 
Subsurface Environmental ImpactsSubsurface Environmental Impacts

• Larry M. Deschaine, PE
– Engineering Physicist
– SAIC & Chalmers University of Technology

• Contact info: larry.m.deschaine@alum.mit.edu
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Information Content Fused Information Content Fused 
ApproachApproach

• Integrated algorithm(s) consist of:
– Simulation models based on physics
– Data models based on sampling
– Uncertainty handled through (geo)-statistics

• Information content fusion (Data & Physics):
– Signal processing (i.e. Kalman Filters, etc.)
– Genetic Programming

• Optimal System Estimate
– Optimal estimate of “system” for locating plume at 

given time, or time-space correlated estimates of long 
term monitoring programs
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Fundamentally Different From Fundamentally Different From 
EstimationEstimation

• Current methods typically gather data, calibrate 
model and use model for predictions
– Models break down as physics becomes complex, 

data sparse or input parameters not well known
• This method fuses the information content via 

signal processing / machine learning algorithms:
– Integrated data/physics model provide optimal 

estimates based on knowledge gained from both the 
physical simulator and the data, updated as new 
information is obtained
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LTM: Extend the reduction of uncertainty to include value of LTM: Extend the reduction of uncertainty to include value of 
historic samples in space and time historic samples in space and time --> Results in less > Results in less 

samples needed to understand long term system behaviorsamples needed to understand long term system behavior
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OPDATEOPDATE

• David Dougherty, PE
– Subterranean Research, Inc.

• Contact info: ddougher@subterra.com
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Fusion of Data, SimulationFusion of Data, Simulation

• Site-specific, consulting approach
– Strong emphasis on decision-trees

• Simulation models first used to both:
– Help plan remedy phases during RI, FS and 

design LTM program
• One goal of LTM design should be to improve simulation 

model for anticipated future remedy/risk assessments

– Make predictions about future subsurface 
conditions
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Use of Model in LTM Planning: Placement of Use of Model in LTM Planning: Placement of 
MWsMWs Accounts for Different Phases of RemedyAccounts for Different Phases of Remedy
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Retrospective AnalysisRetrospective Analysis

• Retrospective hydrologic data assimilation
– Applied to observed data to:

• 1) add branches to LTM decision trees, and
• 2) improve quality of forecasts

• Measured data used to update and 
optimize (“opdate”) simulation models
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Using Data AssimilationUsing Data Assimilation

Larger Adjustments
Early Time Late Time

Smaller Adjustments
Use Observation Data 
to Update Models and 
Uncertainty
Assessments

Predictive Model 
Forecast

Adjust c(x,y,z) 
based on 
measurements
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““OpdateOpdate””--inging
“Snapshot in time” (July, 
1999), prior to and after 
updating the predicted 
concentration plumes with 
monitoring data.
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Retrospective Data Retrospective Data 
AssimilationAssimilation——OPDATE™OPDATE™
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SummarySummary

• ‘Next Generation’ methods offer great 
promise… however
– Many sites currently lack sufficiently detailed 

data or right kind of data
– More expertise required to correctly set-up, 

implement
• Power, adaptability of genetic algorithms, 

Kalman filter techniques cannot be denied
– Especially true as computer horsepower gets 

faster & cheaper
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Summary (cont.)Summary (cont.)

• Each method being developed for real-world 
applications
– Savannah River, BP, DOE, AF facilities
– Some “scalability” possible, especially with genetic 

algorithm approaches
• Key benefits

– Formal incorporation of additional kinds of data
– Enumeration of entire cost tradeoff curve, sort of


