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Ways 1o, Skin a Cat:

e Optimization techniques for LTM have
advanced over last several years

— Improved mathematics
— Increased complexity
— Combination of statistical & physical data

* Highlight some alternate methods
— Genetic algorithms
— Kalman-type filtering, updating




A Question of Tradeoifs

Computational horsepower
— More analysis time, computer power often required

— More complex models, greater reliance on advanced
numerical methods

More complex data needs

— “Garbage in, garbage out” principle

— More kinds and quantities of data typically needed
— Needed information not always available




t’'s an Empirncal Thing

* No optimization possible without data

— Moving from simpler to more complex
technigues exposes a dilemma

— Advanced approaches may look ‘slick,” but
without extra data, results may be no better

 Determine which data inputs are crucial

— Forward thinking: how can this data be
collected In the future?




Mltieljective Grounadwater
Moniterng Design

» Patrick Reed and Venkat Devireddy

— Department of Civil and Environmental Engineering
— The Pennsylvania State University

e Contact info: preed@engr.psu.edu




Genetic Algorithn Basics

 Genetic algorithms search among all possible
monitoring plans
— Create an initial “population” of sampling plans

— Sampling plans are represented as a string binary digits
e 1—i"well sampled
* 0—i"well not sampled 0O|l1]01|0O0

— Judge each sampling plan based on how well it satisfies
monitoring objectives
» Plans that satisfy design objectives are “highly fit”
e Have higher likelihood of mating and passing traits

— Sampling plans undergo Darwinian “natural selection”
until the best set of plans are evolved




— Measure of the fitness of string

How! dor GAS Work?

— Fitness is rated in terms of the objective functions
— Population members compete to mate & pass traits
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Multieljective Evelution

« The Nondominated Sorted Genetic Algorithm-Il:

— Population classified into fronts using non-dominated
sorting

— Better ranking = Higher likelihood of passing traits
— Entire tradeoffs evolved in single run

Estimation Error
Estimation Error




Case Study: Enumerated
IIraceofi

Two-Objectives: 0012
— Minimize Cost

e  Enumerated FPareto Front

0o

— Minimize Relative Mapping
Error (termed SREE)

220 possible designs

Evaluated using a
nonlinear least squares
Interpolation

Best published result o e ey
— Reed et al (2004) WRR ) - UIdScaIedL(l_.';hqst LI.D
— 38000 evaluations




Case Study: Efficiency: of New
fleols

e Results for 50 trials (using interactive archiving)
— Reduced solution time from hours to seconds

— New tool is up to 90% more efficient

Reed et
al. 2003

Min. no. of design
evaluations

Avg. no. of design
evaluations

Max. no. of design
evaluations




Case Stuay: Tpical Result
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Adaptive Envirenmentall Mieniterng
System (AEMS)

— Under development at RiverGlass Inc.,
Champaign, IL

e Software development company launched by the
University of lllinois

* Project lead: Barbara Minsker, PhD
minskerconsulting@insightbb.com

— Beta testing of AEMS expected to begin in
late Summer 2005

« Completed functionality available now on a project
basis — contact Dr. Minsker for more information




AENS Capanilities

— Build data-driven trend models based on historical
data (geostatistical or analytical models)

— Assess new data in real time to

« |dentify significant deviations from previous trends (spatial or
temporal), providing automated alerts

* |dentify locations/times where additional data would be most
beneficial to reducing risks
— ldentify temporal and spatial redundancies in existing
monitoring regimes




Redundancy Analyses withf AEMS

e Method considers

— Tradeoffs among multiple objectives (e.q.,
cost and error) with mathematical optimization

— Uncertainty Iin identifying robust designs

— Temporal and spatial redundancy
simultaneously

e Applied at 2 BP sites and 1 DOE site

— 22-36% redundancy found in well sampling
plans




AENIS laentifies Vieniternng
Iradeofis
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Opltimizatien eff Large Scale
Supsurface Environmentalilinpacts

e Larry M. Deschaine, PE
— Engineering Physicist
— SAIC & Chalmers University of Technology
e Contact info: larry.m.deschaine@alum.mit.edu




Information Content Eused
Approach

e |ntegrated algorithm(s) consist of:
— Simulation models based on physics
— Data models based on sampling
— Uncertainty handled through (geo)-statistics

 Information content fusion (Data & Physics):
— Signal processing (i.e. Kalman Filters, etc.)
— Genetic Programming

e Optimal System Estimate

— Optimal estimate of “system” for locating plume at
given time, or time-space correlated estimates of long
term monitoring programs




Eundamentally  Diffierent Erem
EStimation

e Current methods typically gather data, calibrate
model and use model for predictions

— Models break down as physics becomes complex,
data sparse or input parameters not well known

e This method fuses the information content via
signal processing / machine learning algorithms:

— Integrated data/physics model provide optimal
estimates based on knowledge gained from both the
physical simulator and the data, updated as new
Information is obtained




Determining epiimal well lecations) & thel: Benelit to
Understanding plume lecation— When to stop adding
wells; Rew terjustify,




LTMVE Extend the reduction; off uncertainty to include value: of
nistenc samples in space and time -> Results/in 1ess
samples needed te understanallong term| System henavior

Samples are collected when the space-time correlated
uncertainty exceeds preset limits

——Estimate
& Upper Conf Limit
m Lower Conf Limit




OPDATE

 David Dougherty, PE
— Subterranean Research, Inc.

e Contact info: ddougher@subterra.com




[Fusion of Data, Simulation

o Site-specific, consulting approach
— Strong emphasis on decision-trees

 Simulation models first used to both:

— Help plan remedy phases during RI, FS and
design LTM program

 One goal of LTM design should be to improve simulation
model for anticipated future remedy/risk assessments

— Make predictions about future subsurface
conditions




Use off Medel inr LTV Planning: Placement of;
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Retrospective Analysis

* Retrospective hydrologic data assimilation

— Applied to observed data to:
e 1) add branches to LTM decision trees, and
e 2) Improve quality of forecasts
 Measured data used to update and
optimize (“opdate”) simulation models




Using Data Assimilation

Larger Adjustments Smaller Adjustments

Use Observation Data
to Update Models and YN AN

based on
measurements

Uncertainty EE Adjust c(x,y,2)
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“Opdate™-ing

“Snapshot in time” (July,
1999), prior to and after
updating the predicted
concentration plumes with
monitoring data.

Predictive Model A o Maodel With Data Updates




Retrospective Data
Assimilation—0OPDATE™

Sensitivity to When and Where Do
Historical Sampling Frequency Errors Occur?

Relative Error Magnitude by Well and Measurement Event, pg/L
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SuUmmeany.

* ‘Next Generation’ methods offer great
promise... however

— Many sites currently lack sufficiently detailed
data or right kind of data

— More expertise required to correctly set-up,
Implement

 Power, adaptability of genetic algorithms,
Kalman filter techniques cannot be denied

— Especially true as computer horsepower gets
faster & cheaper




Summany/ (cont.)

 Each method being developed for real-world
applications
— Savannah River, BP, DOE, AF facillities
— Some “scalabllity” possible, especially with genetic
algorithm approaches
o Key benefits
— Formal incorporation of additional kinds of data
— Enumeration of entire cost tradeoff curve, sort of




