High Resolution Characterization Throughout Project Lifecycle

Michael J. Deliz, P. G.
Remediation Project Manager
John F. Kennedy Space Center
Presentation Outline

- Introduction to Kennedy Space Center (KSC)
- KSC Corrective Action Program
- Adaptive Site Management at KSC
- High Resolution Site Characterization (HRSC)
- Case Studies of HRSC at KSC
- Lessons Learned
Topographic relief is slight (sea level to 20 feet on Recent dunes)
- Sand ridges and swales

Lithology is dominated by varying amounts of fine-grained sand, medium sand with shell fragments, fine sand with shell fragments, fine-silty sand, sandy clay with silt and shell fragments to approximately 120 feet below land surface (BLS) – Miocene to Recent
- Eocene carbonate bedrock at approximately 150 feet BLS

Depth to groundwater (3-6 feet BLS)
- Groundwater classified as potential drinking water (G-II) based upon total dissolved solids

Dynamic interaction of groundwater and the surficial geology - wetlands represent ~¼ KSC property
Aerial View of the LC39 Area of KSC
Site Background and History

NASA’s launch operations Center

Built in the early 1960’s to support the Apollo Program

1981 – 2011 – Space Transportation Program

International Space Station flight hardware processing and final checkout

Launch Services Program

- Manages unmanned NASA missions
Site Background and History

Kennedy Space Center

Medical and Environmental Services Division

♦ Commercial Crew Program
 - To provide access to the International Space Station
 - SpaceX
 - Boeing

♦ Space Launch System
 - NASA’s next generation rocket
 - Ground processing and support

♦ Multi-User Spaceport
 - SpaceX operates LC39A
 - Boeing operations in the Orbiter Processing Facilities
Regulatory Framework

- Regulated under the Resource Conservation and Recovery Act (RCRA) and its Hazardous and Solid Waste Amendment
- Overseen by the Florida Department of Environmental Protection (FDEP)
- Toxics Substances and Control Act (TSCA) is managed by the Environmental Protection Administration (EPA) Region IV

KSC Remediation Team (KSCRT)

- Comprised of FDEP, NASA civil servants, three A&E’s and KSC’s environmental support contractor
- Meets 1-2 days every 6 to 8 weeks to discuss site progress and make decisions on paths forward
RCRA Corrective Action Inventory

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of Sites</th>
<th>Percentage of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Further Action</td>
<td>151</td>
<td>59</td>
</tr>
<tr>
<td>Corrective Measures Implementation (CMI)</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>Corrective Measures Study (CMS)</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>RCRA Facility Investigation (RFI)</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Confirmation Sampling (CS)</td>
<td>41</td>
<td>16</td>
</tr>
<tr>
<td>SWMU Assessment (SA)</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Petroleum</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
Dense Non-Aqueous Phase Liquid

Groundwater

TCE DNAPL

Groundwater

TCE DNAPL
Adaptive Site Management Perspective

Kennedy Space Center

Medical and Environmental Services Division

 Confirmatory Sampling ▶ RCRA Facility Investigation ▶ Corrective Measures Study ▶ Statement of Basis ▶ Corrective Measures Implementation

No Further Action

Interim Measures

Statement of Basis ▶ Corrective Measures Implementation

No Further Action

Long-Term Monitoring

♦ Remedy conducted through interim measure(s) (IMs)

♦ IMs conducted such that Long-Term Monitoring is final remedy
Adaptive Site Management Perspective

- Assessment *(DOES NOT END WITH DESIGN)*
- Design *(DOES NOT END WITH IMPLEMENTATION)*
- Optimization Evaluations *(THROUGHOUT)*
KSC implemented the frequent use of high-resolution site characterization (HRSC) in 2008 following the conclusion that many of the legacy sites at the Center were under assessed horizontally and vertically:

- Previous groundwater delineation efforts had no minimum distance between sampling point (horizontally and vertically)
- “Knife” edges both horizontally and vertically were found repeatedly at numerous sites that were at the time under investigation

As a result a multi-step process was developed by the KSCRT:

- Adequate site characterization
- Participate in evaluation of remedial technologies
- Review preliminary designs
- Evaluate efficacy of interim measures
Multi-Step Engineering Evaluation Process

Step 1: Site Characterization
Step 2: Remedial Alternatives
Step 3: Remedy Design and Implementation
Step 4: Monitor & Design Optimization
High-Resolution Site Characterization Tool Box

- Direct Push Technology (DPT) and Mobile Laboratories
- Membrane Interface Probe (MIP)
- Environmental Visualization Software (EVS)
- Hydraulic Profiling Tool (HPT)
- Saturated Soil Sampling
The multi-step process emphasizes the importance of HRSC for vertical and horizontal delineation of contaminated groundwater. As the process evolved a spacing was developed for horizontal site characterization:

- 100 ft spacing for low concentration plume (LCP, areas of affected groundwater with concentrations of contaminants of concern [COCs] greater than FDEP Groundwater Cleanup Target Levels [GCTLs]).
- 50 ft spacing for high concentration plume (HCP, areas of affected groundwater with concentrations of COCs greater than FDEP Natural Attenuation Default Concentrations [NADCs]).
- 25 ft spacing for hot spots (isolated areas of affected groundwater with concentrations of COCs greater than ten times FDEP NADCs), and
- 10 ft spacing for Dense Non-Aqueous Phase Liquid (DNAPL) source areas.
Pairing of MIPs and DPT Data

Plume Nomenclature

Kennedy Space Center
Medical and Environmental Services Division

Low Concentration Plume

Hot Spot > 10x NADC

High Concentration Plume
Sampling Locations

Kennedy Space Center Medical and Environmental Services Division

♦ Standardized and modified groundwater sampling grid
 ➢ 100 ft
 ➢ 50 ft
 ➢ 25 ft

Legend
- DPT Sample Location
- Monitoring Well Location (showing screen interval)
- VC 10X NADC (1.11 acres)
- VC NADC Isopleth (8.07 acres)
- VC GCTL Isopleth (22.45 acres)
- VC NADC sink (0.02 acres)
Hydraulic Profiling Tool Overview

- **Technology use:** Real-time vertical hydraulic conductivity profiling
- **Equipment:** DPT Rig, HPT Tooling (pressure/conductivity sensor & water injector)
 - Water injected as tool is advanced
 - Pressure sensor measures response of soil to water injection
 - Identifies ability of soil to transmit water
- **Measured data output:** Electrical conductivity, injection flow and pressure
- **K value calculated by HPT software using flow and pressure data**
- **Interpretation:**
 - EC indicates changes in lithology
 - Peaks indicate high K/flow zones
 - Valleys indicate low K/flow zones
Saturated Soil Sampling

Kennedy Space Center

Medical and Environmental Services Division

<table>
<thead>
<tr>
<th>Location</th>
<th>Sample Date</th>
<th>Sample Depth (ft BLS)</th>
<th>Trichloroethene</th>
<th>cis-1,2-Dichloroethene</th>
<th>trans-1,2-Dichloroethene</th>
<th>Vinyl Chloride</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC34-DPT0332</td>
<td>08/03/2011</td>
<td>37.0</td>
<td>15</td>
<td>6.8</td>
<td>0.055 I</td>
<td>0.16 I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43.5</td>
<td>70</td>
<td>4.5</td>
<td>0.11 U</td>
<td>0.13 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45.0</td>
<td>3.4</td>
<td>1.8</td>
<td>0.04 U</td>
<td>0.048 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48.0</td>
<td>1.8</td>
<td>1.5</td>
<td>0.037 U</td>
<td>0.046 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53.0</td>
<td>0.0098</td>
<td>0.0042 I</td>
<td>0.00042 U</td>
<td>0.00052 U</td>
</tr>
<tr>
<td>LC34-DPT0333</td>
<td>08/03/2011</td>
<td>37.0</td>
<td>46</td>
<td>6.5</td>
<td>0.083 I</td>
<td>0.075 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44.0</td>
<td>65</td>
<td>1.1 I</td>
<td>0.24 U</td>
<td>0.29 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45.5</td>
<td>64</td>
<td>3.3</td>
<td>0.064 I</td>
<td>0.062 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47.0</td>
<td>37</td>
<td>2.0</td>
<td>0.049 U</td>
<td>0.059 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48.5</td>
<td>5.7 L</td>
<td>0.73 L</td>
<td>0.0042 I</td>
<td>0.0013 I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53.0</td>
<td>0.0095</td>
<td>0.002 I</td>
<td>0.00044 U</td>
<td>0.00054 U</td>
</tr>
<tr>
<td>LC34-DPT0334</td>
<td>08/03/2011</td>
<td>34.5</td>
<td>4.8</td>
<td>2.7</td>
<td>0.05 I</td>
<td>0.033 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.0</td>
<td>6.8</td>
<td>7.1</td>
<td>0.042 I</td>
<td>0.30 I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45.5</td>
<td>5.7 L</td>
<td>4.0 L</td>
<td>0.078</td>
<td>0.0028 I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47.0</td>
<td>31</td>
<td>5.7</td>
<td>0.093 I</td>
<td>0.065 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48.5</td>
<td>5.3</td>
<td>1.4</td>
<td>0.034 U</td>
<td>0.041 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53.0</td>
<td>0.006 J</td>
<td>0.003</td>
<td>0.00032 U</td>
<td>0.00039 U</td>
</tr>
</tbody>
</table>
Case Studies

Kennedy Space Center

Medical and Environmental Services Division

♦ 24 sites have been re-assessed/assessed utilizing HRSC at KSC
 ➢ All phases of the RCRA Corrective Action Program (RFI - CMI) including treatment system optimization
♦ Converter Compressor Building (CCB) and Area South of K7-516 (516S) - RCRA Facility Investigation
♦ Launch Complex 34 (LC34) - Corrective Measures Study
♦ Former Drum Storage Area (FDSA) - Statement of Basis
♦ Components Cleaning Facility (CCF) - Corrective Measures Implementation (CMI)
Site Background

Kennedy Space Center

Medical and Environmental Services Division

Source concentrations by site

<table>
<thead>
<tr>
<th>RCRA Site</th>
<th>Chlorinated Plumes</th>
<th>Maximum TCE Detection (ppb)</th>
<th>Site Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convertor Compressor Building (CCB)</td>
<td>11.4 acres water table to 60’ bls</td>
<td>191,000</td>
<td>Provided compressed gases to support launch and launch preparation activities since 1965</td>
</tr>
<tr>
<td>Component Cleaning Facility (CCF) and Area South of K7-516 (516S)</td>
<td>34.1 acres water table to 75’ bls</td>
<td>1,300,000 and 11,000</td>
<td>Precision cleaning facility from 1962 to 1999 and 516S was CCF support area</td>
</tr>
<tr>
<td>Former Drum Storage Area (FDSA)</td>
<td>4.1 acres, water table to 55’ bls</td>
<td>4,400</td>
<td>Non-hazardous waste storage from early 1970s to early 1990s</td>
</tr>
<tr>
<td>Launch Complex 34</td>
<td>336.9 acres water table to 118’ bls</td>
<td>1,400,000</td>
<td>Saturn 1 and 1B launch pad from 1959 to 1968 conducted precision cleaning of spaceflight hardware</td>
</tr>
</tbody>
</table>
A RCRA Facility Investigation (RFI) was implemented in multiple phases, starting in 2005, to delineate the nature and extent of groundwater contamination. HRSC was initiated at the site in 2009 following the discovery of high concentrations of TCE indicative of a DNAPL source. Multiple Hot Spots and DNAPL sources were delineated. DNAPL was identified which promoted fine tuning of the HRSC process to sample using a 10 ft horizontal spacing within DNAPL areas. Vertical delineation included use of MIPs that revealed a thin layer of DNAPL source area less than one foot in thickness. In 2012, HRSC was initiated at Hot Spots 3 and 4 based on the HRSC refinement of Hot Spots 1, and 5 lessons learned. DNAPL was identified at Hot Spot 4 and delineated using HRSC of 10 ft horizontal spacing.
Converter Compressor Building

- Low Concentration Plume, High Concentration Plume, Hot Spots, and DNAPL Source Zone were all evaluated by HRSC.
- Groundwater treatment was proposed to be implemented as a series of IMs.
- HRSC provided a well defined treatment zone.
- Air Sparging and In-situ Biogeochemical Transformation / Anaerobic Reductive Dechlorination were evaluated.
- Air Sparging of the HCP and Hot Spots were selected to be implemented as groundwater IMs.
- Hot Spot 1, 2, and 5 IM has operated for 1.5 years reducing maximum VOC concentrations by several orders of magnitude:
 - 228 air sparge wells.
- System currently being expanded to include Hot Spots 3 and 4.
Converter Compressor Building

Entire Site

<table>
<thead>
<tr>
<th></th>
<th>HRSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCP (acres):</td>
<td>12.5</td>
</tr>
<tr>
<td>HCP (acres):</td>
<td>5.8</td>
</tr>
<tr>
<td>Hot Spot (acres):</td>
<td>2.0</td>
</tr>
<tr>
<td>Sample Locations:</td>
<td>409</td>
</tr>
<tr>
<td>Samples:</td>
<td>2,176</td>
</tr>
<tr>
<td>Average distance between Sampling points (feet):</td>
<td>46</td>
</tr>
</tbody>
</table>

Hot Spots 3 and 4

<table>
<thead>
<tr>
<th></th>
<th>Pre HRSC</th>
<th>Post HRSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCP (acres):</td>
<td>4.0</td>
<td>5.1</td>
</tr>
<tr>
<td>HCP (acres):</td>
<td>1.1</td>
<td>2.7</td>
</tr>
<tr>
<td>Hot Spot (acres):</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Sample Locations:</td>
<td>86</td>
<td>246</td>
</tr>
<tr>
<td>Samples:</td>
<td>446</td>
<td>1,379</td>
</tr>
<tr>
<td>Average distance between Sampling points (feet):</td>
<td>80</td>
<td>40</td>
</tr>
</tbody>
</table>
RCRA Facility Investigation / Interim Measures

Kennedy Space Center
Medical and Environmental Services Division

♦ Converter Compressor Building Hot Spots 3 & 4
Corrective Measures Study / Interim Measure

Launch Complex 34

- HRSC was implemented following the submittal and approval of the Corrective Measures Study in 2008
 - Recommended hydraulic containment of the DNAPL Source Zone and supplemental Hot Spot assessments
 - Initial Hot Spot assessments expanded the containment zone (hot Spots 1, 2, and 3)
 - Membrane Interface Probe (MIP) data collected in 2008 and direct push sampling data utilized (Hot Spot 4)
- The shear magnitude of the size of the plume causes deviations from the agreed upon HRSC sampling intervals
- Secondary round of MIPs data and Hydraulic Profiling Tool (HPT) utilized for hydraulic containment treatment system optimization
- HRSC continues with the assessment of additional Hot Spots (Hot Spots 5 and 6)
LC34 DNAPL Source Zone and Hot Spots

Kennedy Space Center

Legend
- GCTL: Low-Concentration Plume
- NADC: High-Concentration Plume
- NADC 10x: Hot Spot
- NADC 100x: Hot Spot
- DSZ: DNAPL Source Zone

Medical and Environmental Services Division
Corrective Measures Study / Interim Measure

Kennedy Space Center

Medical and Environmental Services Division

Pre-IM MIP: Jan 2013 MIP: Jan 2013 HPT/MIP:

<table>
<thead>
<tr>
<th>Date</th>
<th>TCE (ppb)</th>
<th>Mass Recovery (lbs/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/20/2010</td>
<td>280,000</td>
<td>28.5</td>
</tr>
<tr>
<td>2/21/2011</td>
<td>3,630</td>
<td>4.4</td>
</tr>
<tr>
<td>2/2/2012</td>
<td>42,500</td>
<td>3.8</td>
</tr>
<tr>
<td>3/11/2013</td>
<td>39,000</td>
<td>3.2</td>
</tr>
<tr>
<td>4/3/2014</td>
<td>33,600</td>
<td>2.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>TCE (ppb)</th>
<th>Mass Recovery (lbs/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/20/2010</td>
<td>940,000</td>
<td>34.7</td>
</tr>
<tr>
<td>2/21/2011</td>
<td>203,000</td>
<td>7.4</td>
</tr>
<tr>
<td>2/2/2012</td>
<td>126,000</td>
<td>9.3</td>
</tr>
<tr>
<td>3/11/2013</td>
<td>66,300</td>
<td>4.2</td>
</tr>
<tr>
<td>4/3/2014</td>
<td>59,900</td>
<td>5.6</td>
</tr>
</tbody>
</table>

*Increase RW2B from 5 to 7.5 gpm
Kennedy Space Center

Medical and Environmental Services Division

Pre-IM MIP:

Jan 2013 MIP:

Jan 2013 HPT/MIP:

RW-4B Influent

<table>
<thead>
<tr>
<th>Date</th>
<th>TCE (ppb)</th>
<th>Mass Recovery (lbs/d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/20/2010</td>
<td>250,000</td>
<td>17.0</td>
</tr>
<tr>
<td>2/21/2011</td>
<td>54,100</td>
<td>3.5</td>
</tr>
<tr>
<td>2/2/2012</td>
<td>16,100</td>
<td>1.0</td>
</tr>
<tr>
<td>3/11/2013</td>
<td>2,640</td>
<td>0.2</td>
</tr>
<tr>
<td>4/3/2014</td>
<td>517</td>
<td><0.1</td>
</tr>
</tbody>
</table>

*Reduce flow rate from 4 to 3 gpm (expansion flow budget variable)
HRSC continuously refines the conceptual model for one of the most assessed sites in the state of Florida.

- Additional TCE mass identified between DPT sampling intervals +/- 18 feet bls in lower portion of Layer 1
 - MIPs identified an interval requiring VOC sampling
 - Delineated Hot Spot 4 with an estimated 4000 pounds of TCE

- MIPS/HPTs confirmed extent of Layer 4 mass storage

- HPTs identified that Layer 6 (60-80 feet bls) is more heterogeneous than identified via soil coring

- MIP/HPT pairings narrowed the intervals capable of mass transport and storage within Layer 6

- TCE concentrations > 250,000 ppb were remediated via pump and treat
Former Drum Storage Area

- A RCRA Facility Investigation (RFI) was conducted in three phases, starting in 2006, to delineate the nature and extent of groundwater contamination.
- The RFI investigation was considered robust with a horizontal sample distribution of 125 feet.
- CMS was developed and approved in 2008.
- Statement of Basis recommending an In-situ Biogeochemical Transformation / Anaerobic Reductive Dechlorination remedy was submitted in 2009.
- Pilot Study initiated in 2009, monitoring wells identified elevated concentrations of COCs, determined plume interior was not adequately characterized.
- HRSC was initiated in 2009.
- HRSC horizontal spacing used in our EE process developed through investigation activities at this site.
Post Statement of Basis / Interim Measure

Kennedy Space Center

Medical and Environmental Services Division

♦ Former Drum Storage Area

- HRSC provided a well defined treatment zone
- Remedy was re-evaluated
- Air Sparging and In-situ Biogeochemical Transformation / Anaerobic Reductive Dechlorination

- Air Sparging of the HCP and Hot Spot was selected and implemented as an IM
 - 137 air sparge wells
- Treatment system has successfully operated for one year reducing maximum VOC concentrations by several orders of magnitude

<table>
<thead>
<tr>
<th></th>
<th>Pre HRSC</th>
<th>Post HRSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCP (acres):</td>
<td>2.7</td>
<td>4.1</td>
</tr>
<tr>
<td>HCP (acres):</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Hot Spot (acres):</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>Sample Locations:</td>
<td>54</td>
<td>248</td>
</tr>
<tr>
<td>Samples:</td>
<td>237</td>
<td>866</td>
</tr>
<tr>
<td>Average distance</td>
<td>125</td>
<td>40</td>
</tr>
<tr>
<td>between Sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>points (feet):</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Post Statement of Basis / Interim Measure

Kennedy Space Center

Medical and Environmental Services Division

♦ Former Drum Storage Area

Pre HRSC Plume Delineation

Post HRSC Plume Delineation
Kennedy Space Center | Medical and Environmental Services Division

Corrective Measures Implementation / RFI

♦ Component Cleaning Facility & Area South of K7-516

- The RFI was conducted in the late 1990’s and considered robust with a horizontal sample distribution of 125 feet
 - DNAPL investigation included a 3-D high resolution seismic survey, Sudan IV hydrophobic dye test, and membrane interface probes (MIPs).
 - Three Freon DNAPL areas and one Trichloroethene (TCE) DNAPL area were identified

- Statement of Basis approved and CMI implemented in 2002
 - The shallow TCE DNAPL area was excavated in 2002 and in 2005 groundwater remedial action was implemented - air sparge/soil vapor extraction and hydraulic containment of the high concentration plume

- Performance monitoring results showed increasing concentrations of COCs

- HRSC was implemented upon the discovery of a potential secondary source area on the south side of the Crawlerway
Corrective Measures Implementation / RFI

Kennedy Space Center — Medical and Environmental Services Division

♦ Component Cleaning Facility & Area South of K7-516

- HRSC changed the conceptual site model provided a well defined treatment zone
 - Led to re-evaluation of the original site
- Air Sparging of the HCP and Hot Spot was selected and implemented at Area South of K7-516
 - 56 air sparge wells
- Treatment system has successfully operated for one year
- Vertical HRSC was conducted in one of the source zones
 - Determined mass in silty-clay
 - Re-evaluated source zone treatment evaluations
 - Electrical Resistance Heating selected as an IM

<table>
<thead>
<tr>
<th></th>
<th>Pre HRSC</th>
<th>Post HRSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCP (acres):</td>
<td>14.9</td>
<td>34.1</td>
</tr>
<tr>
<td>HCP (acres):</td>
<td>5.5</td>
<td>8.4</td>
</tr>
<tr>
<td>Hot Spot (acres):</td>
<td>3.3</td>
<td>1.0</td>
</tr>
<tr>
<td>Sample Locations:</td>
<td>82</td>
<td>469</td>
</tr>
<tr>
<td>Samples:</td>
<td>208</td>
<td>2,839</td>
</tr>
<tr>
<td>Average distance between Sampling points (feet):</td>
<td>250</td>
<td>65</td>
</tr>
</tbody>
</table>
Corrective Measures Implementation / RFI

Kennedy Space Center Medical and Environmental Services Division

♦ Component Cleaning Facility & Area South of K7-516

CCF/516S Pre HRSC CCF/516S Post HRSC
Component Cleaning Facility

- Vertical HRSC was implemented at Hot Spot 2 to refine the mass calculation of the source zone where TCE exceeded 50,000 µg/L.
- One foot intervals were collected via DPT refining the zone to 3 to 4 feet thick.
Most sites at KSC had over simplified conceptual site models

- Groundwater plumes frequently have “knife” edges both horizontally and vertically at KSC
- Slight changes in hydraulic conductivity have a large impact on contaminant distribution

Inadequate groundwater plume delineation inhibits remediation efforts

Develop a sampling frequency based on horizontal and vertical components, for example:

- For sandy soils with silt a horizontal spacing of 10 feet for DNAPL source areas, 25 ft horizontal spacing for Hot Spots, 50 ft horizontal spacing for HCPs and 100 ft LCP is adequate for HRSC
- Vertical spacing should be based on lithology and the use of MIPs
KSC Lessons Learned

♦ Maintain consistent vertical sampling intervals across the site
 ➢ While it might appear to be a cost savings to reduce vertical sampling intervals, the KSCRT has learned that in most cases you will need to go back to locations to collect skipped vertical sampling intervals to fill data gaps

♦ KSC believes it is ultimately cheaper to assess and re-assess a site through HRSC than to implement a groundwater remedy and not reach cleanup objectives
Questions