High Resolution Site Characterization Pitkin—1
Tools and Approaches

The Problem

One cannot effectively solve a problem which one has not adequately and
accurately described

Many Remedial Investigations continue for years or even decades

Many remedies underperform or fail due to a lack of understanding of site
conditions and processes

High Resolution Site Characterization
Tools and Approaches

The cost of these failed/underperforming remedies is large

The costs of excessive long term monitoring programs related to investigating
sites with monitoring wells is large

December 2, 2015
The costs of adequate site characterization (currently referred to as High

Seth Pitkin
Federal Remedial
Site Charac on for Effective Remediation Resolution Site Characterization) which allows one to avoid failed remedies is
small in comparison, but requires an up front investment to result in lower life
cycle costs.
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History and Development of Contaminant Hydrogeology .
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Development of (Contaminant) Hydrogeology Development of (Contaminant) Hydrogeology

John Cherry — 1981

“In th.e early ninete.en seventies, it becarrje ap.par.ent that ... the agp. roach C.V. Theis — 1967 “I consider it certain that we need a
used in the evaluation of contaminant migration in groundwater... involved new conceptual model, containing the known
direct adaptations of ...monitoring methods and ...models of the type heterogeneities of natural aquifers, to explain the
traditionally used in groundwater resource studies. ...the behavior of phenomenon of transport in groundwater.”
groundwater flow systems is ... such that these direct adaptations are
nsuitable or misleading because of the heterogeneous character of the
eological deposits and/or the geochemical nature of the contaminant

species.”

u

Our science is a young one. Our thinking on solute

Our science is a young one. Our thinking on solute
transport is powerfully and inappropriately influenced by

Key transport is powerfully and inappropriately influenced by

the first 150 years of the development of hydrogeology.

Point the first 150 years of the development of hydrogeology.
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High Resolution Site Characterization
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HRSC Today

Incorporation of major paradigms into CSM (e.g.)
« Heterogeneity and Anisotropy 1‘
Awareness of spatial structures of key variables ‘lt
DNAPL

Weak Transverse Dispersion Isotropic,

homogeneous
Matrix diffusion/back diffusion
Incorporation of geologic interpretation (e.g., sequence stratigraphy) in
CSMs to provide framework for flow systems
Collaborative use of tools
« Direct sensing for screening, NAPL detection
« Groundwater/hydrostratigraphy profiling in permeable zones
« Soil coring and sub core profiling for aquitard/low K material |‘
« On site analytical chemistry
Incorporation of the Triad Approach principles 1‘—>
« Dynamic work Strategies Anisotropic,

heterogeneous

« Real-time data
« Collaborative Data

Depth-Integrated, Flow Weighted Averaging
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Sampling Coverage and Density:
HRSC Wisdom Through the Ages

Pitkin Cherry

“You never know what is enough, unless
you know what is more than enough”
William Blake

Key
Point

The only way to know what degree of resolution you need is to
look at a high level of resolution.
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HRSC Addresses Two Critical Issues

Sampling Scale and Data Averaging

» Measurements must be made at a scale that is meaningful with respect to
the variability of the quantity being measured

Coverage

« Profiles and Transects
» Horizontal spacing

« Vertical spacing

Scaleand . —
Data + Coverage —-—
Averaging
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High Resolution (more pixels):
Sampling Scale and Averaging
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Depth (m)

How Much is Enough? What is Right Vertical Spacing?
A Profile Through PCE Plume in Sandy Aquifer
Shallow, medium, deep 10 ft. vertical spacing

5 ft. vertical spacing 0.65 ft. vertical spacing

n

]
n
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PCE pg/L

Key The vertical spacing you use determines whether you

understand the nature of the plume or not.
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Multi-Level Sampling Transect mm-Scale Textural Changes Control DNAPL Migration
PCE in a Sandy Aquifer
= . Poulsen & Kueper, 1992

Shallow,
medium,
deep

10-ft
vertical
spacing

~25 cm

0.8-ft
vertical
spacing

Key DNAPL distribution is controlled by capillary pressures that vary

P L LTI, 0 L S PR S, . L Y TR B S0 Y, P P SO Point at the mm scale. Distribution is very complex.
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DNAPLs Commonly Encounter Aquitards

. . Plume
Dissolved mass in

the matrix pore water

A = Ty
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| Double Wall, Sealable Joint Sheet Piling Cell Keyé& into Aquitard
Will the aquitard !

stop the DNAPL?

CFB Borden 9x9 m Cell
Courtesy of Beth Parker

(Mackay and Cherry, 1989)
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9 x 9 Meter Cell Experiment CFB Borden Borden 9x9 m Cell Experiment
770 Liters DNAPL PCE DNAPL Injection 1991
Injected July 1991 DNAPL Distribution after 573 Hours Auger Holes 1991-94 9x9m Cell
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135
HSA Boring Outside Cell
Uh Oh!
Courtesy of Beth Parker
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Areal Distribution of DNAPL within Aquitard

Section 3

O~
Section 1 /0
DNAPL ON
o= TOP OF
AQUITARD ° o
o
o
Section 2
o DNAPL
o NO DNAPL 0 10m

Courtesy of Beth Parker

Essential Information from Cores

Geologic/hydrogeologic features

Physical, chemical & microbial
properties

Contaminant mass distributions
(high- & low-K zones)

Contaminant phase distributions
(detection of DNAPL)

Concentration gradients/diffusive
fluxes

Effectiveness of remedial
technologies
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Example of NAPL Detection

Sudan IV Screening Quantitative TCE Analyses

TCE (ug/g wet soil)
0 100 200 300 400 500 600 700

Sudan IV

positive
SudanlV test 22
@ positive 62"
O negative

Depth (ft bgs) =

0 500 1000 1500 2000
Estimated Porewater TCE
Courtesy of Beth Parker (mg/L)
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Structure and Pore Fluids Intact

Small Scale Features are of Great Import

Sand microbed DNAPL (red) migration
in sand microbed

Courtesy of Beth Parker

Soil Core Sampling - NAPL Detection

Stainless
Steel
Sampler

Plunger

Soil core

Courtesy of Beth Parker

Groundwater Profiling - WaterlooAPS™
Integrated Data Acquisition

« Physical Chemical
Data
 Concentration Data
* Hydraulic Head Data
« Index of Hydraulic
Conductivity Data

a
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WaterlooAPS™ Configurations

Gas-Drive Pump | | |Peristaltic Pump
sample Line
RS —KPRO +Sample Line 1
KPRO Line
-{ 19" Rod |
|| 1% Rod |
~Reed Valve *
\~0-rings 1 I
—v" Stainless Steel \—FEP Tubing \
Tubing 1
APS APS
175 150

Two Uses of I Data

Sample Depth Selection

Chlorobenzene (ug/L) Stratigraphic Interpretation
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Elevation (feet)

Aquitard

Depth (feet, below ground surface)
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8
Ix = Index of Hydraulic Conductivity (unitless) Horizontal Distance (feet)

NAS Jacksonville Investigations
(July/August 2011)

QU3 Building 106

Former dry cleaner (1962 —
1990)

PCE and TCE released to
shallow aquifer

Building removed

Interim remedies (AS, SVE)
have been discontinued after
5-yr review (2005)

Strong interest in evaluating
MNA as long-term remedy

N
® Detailed study locations éw W.GSI QesToe
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™ I
WaterlooAPS™ Data Acquisition
Notebook o String potentiometer on dill
computer . rig/ Geoprobe® measures
----------------------- . depth
:
- Reversible variable- H
e speed peristaltic pum)
Real-time |, and . ¥ Pressure "m g;;d”ve Pu’:ﬂp P Water !
‘water quality data Flow meter _ = "Valve vacuum gauge quality
x - e
) Measures
I SR usiance
transducer potential (ORP)
Stainless steel s le bottk h
Compressed pressure vessel 1/8" stainless “"”P © "“f; V‘"‘
nitrogen  with analyte-free steel tubing stainless steel holders
water
Waterloo profiler tip with
stainless steel screened
inlet ports
Onsite lab
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Post-Remedy Investigation Northern England
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Use of low resolution (conventional) techniques resulted in
remedy failure and need for second remedy.

NAS Jacksonville: Characterization Methods

Membrane Interface Probe (MIP) screening
» Rapid lithology (EC) and contaminant (ECD, PID) delineation — qualitative

WaterlooA”S™ (Advanced Profiler System)
 Real-time hydrostratigraphy
 Targeted groundwater sampling of higher K zones/interfaces

Geoprobe® HPT (Hydraulic Profiling Tool)
» Real time hydrostratigraphy

Continuous cores (Geoprobe® DT System)
« Detailed lithology delineation

» Subsampling for mass distribution (targeted to lower K zones)

Onsite Laboratory
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Layout of Points at Each Investigation Location

OU3-3: Soil and Groundwater Concentrations

Soil CVOC Concentration Soil CVOC Concentration '"Cﬂexd"f :‘Vf’('ﬂ':"c Soil Lithology
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OU3-3: MIP (ECD and PID) and Soil Concentrations
‘ High Concentration Location: OU3-3
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Collocated Soil Cores Demonstrate Good Correlation

Total Soil [VOC] (g/g Mo Depth Shifting.
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MIP Provides Mass Location But Not
Concentration Correlation

MIP: SOIL AT LOCATION OU3-6
(LOW CONCENTRATION)
USING OPTIMIZED SOP

MIP: SOIL AT LOCATION OU3-3
(HIGH CONCENTRATION)
USING OPTIMIZED SOP

MIP ECD Signal (V)
MIP PID Signal (1Y) ol ()
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Conclusion

The purpose of Site Characterization is to understand the pertinent conditions g STONE ENVIRONMENTAL
adequately enough to devise an effective remedy. L F s %
« aka CSM

“Standard” approaches such as monitoring wells are not well suited to the
development of such an adequate understanding

« Depth-integrated, flow weighted averaging
« Large life-cycle expense

Acknowledgements

Scale of sampling and data coverage (density) must be appropriate to the
spatial structure of the variable under consideration

« Hydraulic conductivity, capillary pressure etc.

Leverage existing data and use screening technologies used to reduce costs Beth Parker — University of Guelph

associated with definitive sampling/analysis programs Dave Adamson — GSI

Steven Chapman — University of Guelph

Perhaps it is time to stop calling it “High Resolution” since it is really an ry — NAVFAC

adequate degree of resolution to understand the problem. It is simply Site
Characterization.
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