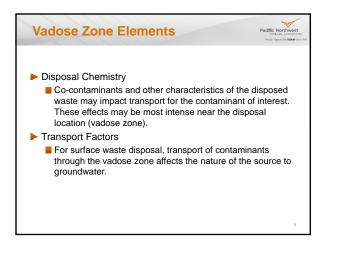
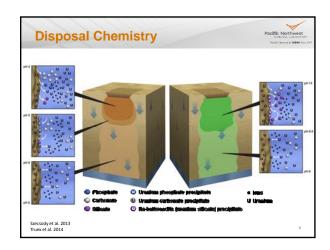
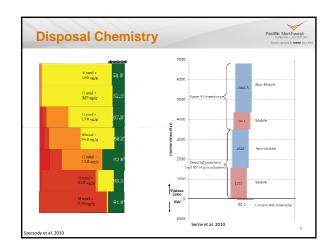
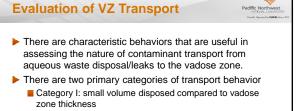
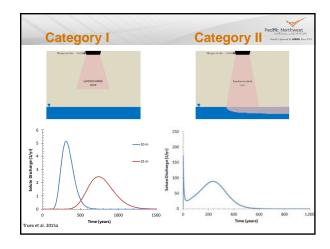

Truex-1

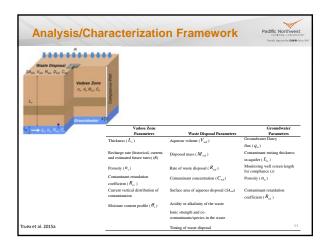

Characterization Approaches for Radionuclide-Contaminated Subsurface Sites

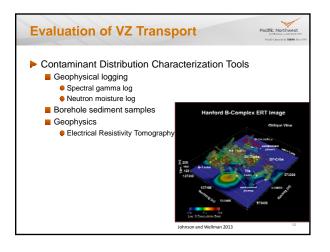

	Pacific Northwest Homewal Laboratory Insult Operated in Battle Since Mol
Characterization Approaches Radionuclide-Contaminated Subsurface Sites	s for
MICHAEL TRUEX Pacific Northwest National Laboratory	



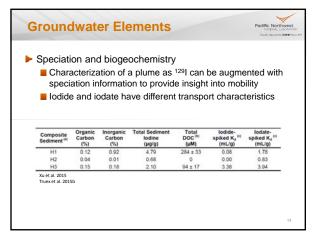


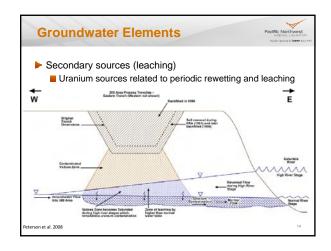

Characterization Approaches for Radionuclide-Contaminated Subsurface Sites

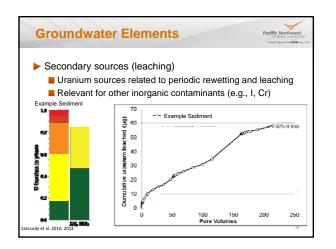

DISP	oosal Chemistry				Pacific Northwest Insternal LABORATORY Insult Operated in Ballete Save	
	Extraction Solution	Hypothesized targeted sediment components	Interpreted uranium mobility of extracted fraction	Color Code		
	1.Aqueous: uncontaminated Hanford groundwater	Uranium in pore water and a portion of sorbed uranium	Mobile phase			
	2.Ion Exch.: 1M Mg-nitrate	Readily desorbed uranium	Readily mobile through equilibrium partitioning		1	
	3.Acetate pH5: 1 hour in pH 5 sodium acetate solution	Uranium associated with surface exposed carbonate precipitates, including uranium carbonates, or other readily dissolved precipitates	Moderately mobile through rapid dissolution processes			
	4. Acetate pH 2.3: 1 week in pH 2.3 acetic acid	Dissolution of most carbonate compounds, including uranium carbonates, and sodium boltwoodite	Slow dissolution processes are associated with uranium release from this fraction such that uranium mobility is low with respect to impacting groundwater			
	5.8M HNO ₃ : 2 hours in 8M nitric acid at 95°C	Dissolution of most minerals expected to contain uranium, considered to represent	Very slow dissolution processes are associated with uranium release from this fraction such			
Szecsody et al. 2010, 2012		total uranium extraction for this study ¹	that uranium mobility is very low with respect to impacting groundwater		7	

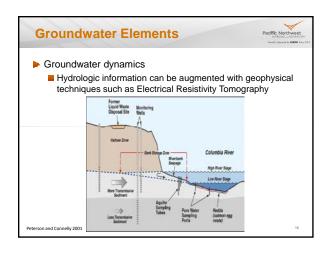


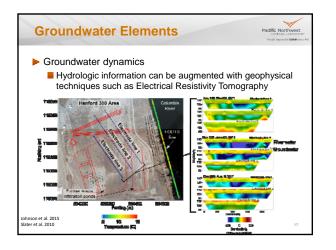
Category II: large volume disposed compared to vadose zone thickness

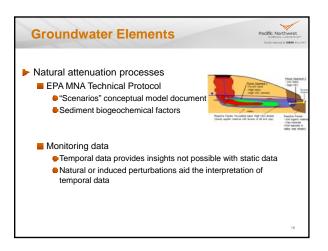


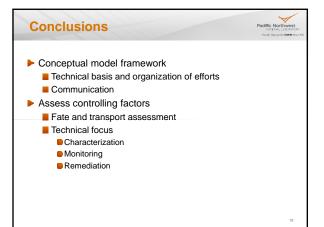





Truex-3


Characterization Approaches for Radionuclide-Contaminated Subsurface Sites





Truex-4

Characterization Approaches for Radionuclide-Contaminated Subsurface Sites

R	eferences	Pacific Northwest
		Dendly Operated by Batelle Since h
	Johnson, T., et al. 2015. Four-dimensional electrical conductivity monitoring of stage-driven river wa water table effects using a transient mesh boundary and conditional inversion constraints. Water Res	
	Johnson TC, and DM Wellman. 2013. Re-Inversion of Surface Electrical Resistivity Tomography Di Complex. PNNL-22520; RPT-DVZ-AFRI-014, Pacific Northwest National Laboratory, Richland, WA	
	Peterson RE, ML Rockhold, RJ Serne, PD Thorne, and MD Williams. 2008. Uranium Contamination Beneath the 300 Area, Hanford Site, Washington . PNNL-17034, Pacific Northwest National Labora	
	Peterson RE, and MP Connelly. 2001. Zone of Interaction Between Hanford Site Groundwater and River. PNNL-13674, Pacific Northwest National Laboratory, Richland, WA.	Adjacent Columbia
	Serne R, et al. 2010. Conceptual Models for Migration of Key Groundwater Contaminants Through the Upper Unconfined Aquifer Below the B-Complex. PNNL-19277, Pacific Northwest National Labo	
	Slater, L. D., et al. 2010. Use of electrical imaging and distributed temperature sensing methods to c groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington, Water Re	
	Szecsody, J.E., M.J. Truex, N. Qafoku, D.M. Wellman, T. Resch, and L. Zhong. 2013. Influence of a solution properties on uranium migration in subsurface sediments. J. Contam. Hydrol. 151:155-175.	
	Szecsody, J.E., et al. 2012. Geochemical and Geophysical Changes During NH3 Gas Treatment of Uranium Remediation. Vadose Zone J. 11(4) doi: 10.2136/vzj2011.0158.	Vadose Zone Sediments for
	Szecsody, JE, et al. 2010. Remediation of Uranium in the Hanford Vadose Zone Using Ammonia Ga Experiments. PNNL-20004, Pacific Northwest National Laboratory, Richland, WA.	s: FY10 Laboratory-Scale
	Truex, MJ, M Oostrom, and GD Tartakovsky. 2015a. Evaluating Transport and Attenuation of Inorg Vadose Zone for Aqueous Waste Disposal Sites. PNNL-24731, Pacific Northwest National Laborato	
	Truex, MJ, BD Lee, CD Johnson, NP Qafoku, GV Last, MH Lee, and DI Kaplan. 2015b. Conceptua in the Subsurface at the Hanford Site. PNNL-24709, Pacific Northwest National Laboratory, Richlan	
	Truex, M.J., et al. 2014. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline V Hanford Site Central Plateau. PNNL-23666, Pacific Northwest National Laboratory, Richland, WA.	Vastes Discharged at the
	Truex, MJ, PV Brady, CJ Newell, M Rysz, M Denham, and K Vangelas. 2011. The Scenarios Appro Remedies for Inorganic and Radionucide Contaminants. SRNL-STI-2011-00459, Savannah River N SC. Available at <u>www.csti.gov.</u> OSTII D1025615, doi: 10.2172/1023615.	
	Xu, C., et al. 2015. "Radioiodine Sorption/Desorption and Speciation Transformation by Subsurface Hanford Site." J. Environ. Radioact. 139:43-55.	Sediments from the