Our Systems

• **Navigation system:**
 – locks, dams, channels

• **Reservoir system:**
 – structures and operating procedures

• **Flood risk reduction system:**
 – Structural, nonstructural, ecosystem features

• **The components of a sediment remedy and the encompassing watershed and its uses**
We need help to resolve our decision problem

• The complexity of the system
 – Intuition is an unreliable guide

• Sediment clean-up projects are “wicked problems” (Rittel and Webber, 1973)
 – no definitive formulation of the problem
 – no right or wrong solutions, only better or worse solutions
 – a broad diversity of values and opinions that are germane to defining solutions
 – no ultimate test of a solution to the problem
How to Manage the Risks

• Navigation vs. Cleanup
 – Do the sediments have to go?

• *In situ* alternatives
 – Monitored Natural Recovery (MNR)
 – Capping
 – Treatment

• *Ex situ* alternatives
 – Dredging
 • Containment
 • Treatment

• What combination of technologies is optimal?
 – Satisfy your objectives hierarchy
What are the objectives and decision criteria?

• 9 NCP criteria
 - Threshold Criteria
 • Overall protection of HH and E
 • Compliance with ARARs
 - Balancing Criteria
 • Long-term effectiveness/permanence
 • Reduction of TMV thru treatment
 • Short-term effectiveness
 • Implementability
 • Cost
 - Modifying Criteria
 • State (or support agency) acceptance
 • Community acceptance

• Other/Imbedded Criteria
 - Consistency with current uses of the waterbody
 • Recreation, navigation
 - Consistency with objectives for the waterbody
 • Restoration
 - Compatibility with other ongoing remediation or restoration activities
 - Compatibility with other activities in the watershed
 - Etc.
Optimization

- History: Operations research arose during WW II to support logistics and training schedules. Later applications within industry.
- OR aims to improve the quality of decisions about the management of limited resources:
 - How to allocate limited resources efficiently
 - Applicable to capital investments, quality of life/environment, etc.

Optimization

Operations Research, Management Science

Decision Analysis, Decision Science

- Linear/Non-Linear/Integer Programming
- Project Management (e.g., Critical Path)
- Risk Analysis
- MCDA
Simple Optimization Problem

- Inspect at least 250 points per day
- Two grades of inspectors, A and B
- 7 grade A and 15 grade B inspectors are available
- Inspector A can check 25 points and B can check 18 points per day
- Wage of Grade A is $80 and $60 for Grade B per day
- What is optimal assignment of inspectors?
Transporting Dredged Material to a Landfill

- You want to determine how much sediment to go from each dredging site to each landfill in order to minimize the total cost
 - Cost can include not only $, but also other non-monetary impacts
- Can consider multi-period planning
OR Success Stories

• FAA Ground-Delay Program
 – To reduce congestion and improve flow of air traffic into airports
 • Determine which aircraft/ how long to delay departures
 • Between 1998 and 2000, 90,000 hours of schedule delays were avoided at a cost savings of more than $150 million

• NYC
 – To improve the deployment of street cleaner, garbage trucks, and inspectors
 • Productivity increased 17%

• GM
 – To identify the optimal way to ship 300 types of components to 30 assembly plants.
 • Cut cost by 26%, saving $2.9 million a year
Multi-Objective Optimization

• Problem: Allocating remedial approaches across a spatially diverse site
 – Site divided into three areas
 – 3 remedial technologies available
 – What is the optimal allocation?

• Objectives:
 – Minimize Cost
 – Minimize incidental harm/risks
 – Minimize time to achieve acceptable risk reduction

• Constraint
 – Each area can use only one of the 3 options
 – Only remedial option 1 or 2 are applicable to Area 1
 – Only remedial option 2 or 3 are applicable to Area 3
 – The total suspended concentration from two adjacent areas must be less than 8
Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Area 1</th>
<th>Area 2</th>
<th>Area 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Option 1</td>
<td>Option 2</td>
<td>Option 3</td>
</tr>
<tr>
<td>Cost per cubic yard</td>
<td>10</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Risk reduction time (mos.)</td>
<td>60</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>Incidental harm/risk</td>
<td>13</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>Suspended conc.</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Optimal Decision & Performance</th>
<th>Objective</th>
<th>When minimize</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cost</td>
</tr>
<tr>
<td>Optimal technique</td>
<td></td>
<td>Area 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Area 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Area 3</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td>Cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Risk Reduction Time</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incidental Harm/Risk</td>
</tr>
</tbody>
</table>
• Optimal solution depends on the relative importance of each objective
 – E.g., Two extreme points are \((W_{\text{cost}}, W_{\text{risk}})=(1,0)\) or \((W_{\text{cost}}, W_{\text{risk}})=(0,1)\)
 – With multiple objectives, can use \(Z = W_i * f(i) + W_j * f(j) + \ldots + W_t * f(t)\)
 where \(f(i)\) is a function of various objectives
Multi-Criteria Decision Analysis

• An approach for structuring and analyzing decision problems

• Emphasis given to:
 – Defining the problem
 – Establishing explicit objectives
 – Defining metrics for evaluating alternative solutions/plans
 – Incorporating human values and risk attitudes
 • Through weighting and utility functions
 – Ranking plans based on quantitative scores derived from metrics
 • Using multi-attribute utility theory
Data Matrix

<table>
<thead>
<tr>
<th>Metric (Weight)</th>
<th>Units</th>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
<th>Option 4</th>
<th>Option 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost (25)</td>
<td>Dollars</td>
<td>27,000</td>
<td>45,000</td>
<td>30,000</td>
<td>35,000</td>
<td>12,000</td>
</tr>
<tr>
<td>Resale Value After Three Years (5)</td>
<td>% of Original Value</td>
<td>44</td>
<td>56</td>
<td>57</td>
<td>49</td>
<td>33</td>
</tr>
<tr>
<td>Repair/Maintenance Cost Per Year (5)</td>
<td>Dollars</td>
<td>100</td>
<td>500</td>
<td>1,000</td>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>Fuel Efficiency (15)</td>
<td>MPG</td>
<td>30</td>
<td>25</td>
<td>45</td>
<td>27</td>
<td>32</td>
</tr>
<tr>
<td>Passenger Compartment Space (15)</td>
<td>ft³</td>
<td>150</td>
<td>170</td>
<td>165</td>
<td>160</td>
<td>145</td>
</tr>
<tr>
<td>Style and Comfort (5)</td>
<td>Qualitative</td>
<td>Finest</td>
<td>Finest</td>
<td>Average</td>
<td>Average</td>
<td>Poor</td>
</tr>
<tr>
<td>Safety Rating (30)</td>
<td>NHTSA Safety Rating</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
Ranking and Contributions by Metric
Ranking Sensitivity to Weight Allocation

Cost: 25 to 30 Safety: 30 to 25

Option 3
Option 4
Option 5
Option 2
Option 1

Fuel Efficiency Cost Passenger Compartment Space Safety Rating Resale Value After Three Years Style and Comfort Repair/Maintenance Cost Per Yr
LaCPR Objectives and Metrics

Planning Objectives
- Reduce risk to public safety from catastrophic storm inundation
- Reduce damages from catastrophic storm inundation
- Promote a sustainable ecosystem
- Restore and sustain diverse fish and wildlife habitats, and
- Sustain the unique heritage of coastal Louisiana by protecting historic sites and supporting traditional cultures

Risk Metrics
- National Economic Development
 - Residual damages
 - Life-cycle costs (Implementation, O&M)
 - Construction time
- Regional Economic Development
 - Regional Economic Development (jobs, income, regional output)
- Environmental Quality
 - Spatial integrity
 - Wetlands restored and/or protected
 - Direct impacts
 - Indirect impacts
 - Historical properties protected
 - Archeological properties protected
- Other Social Effects
 - Residual population impacted
 - Historical districts protected
LaCPR Weightings Results

Weight allocation for gov’t agencies (a) and all stakeholders (b)

(a) (b)

Environmental Objectives
National Economic Objectives
Regional Economic Objectives

Outliers
Example Plan Rankings

Scenario 1

Metric: GA-A

Scenario 2

Metric: GA-A

Scenario 3

Metric: GA-A

Scenario 4

Metric: GA-A
A Sediment Example

KEY:
- **Green**: Dredged Material
- **Blue**: Effluent
- **Yellow**: Manufactured Liner
- **Brown**: Dike Wall
- **Gray**: Cap
- **Light Green**: Standard Landfill Waste

Criteria Levels for Each NY DM Alternative

DM Alternatives	Cost ($/CY)	Public Acceptability	Ecological Risk	Human Health Risk	Estimated Fish COC / Risk Level
CAD	5-29	4400	23	680	18
Island CDF	25-35	980	38	2100	24
Near-shore CDF	15-25	6500	38	900	24
Upland CDF	20-25	6500	38	900	24
Landfill	29-70	0	0	0	21
No Action	0-5	0	41	5200	12
Cement-Lock	54-75	0	14	0.00002	25
Manufactured Soil	54-60	750	18	8.7	22

Blue Text: Most Acceptable Value
Red Text: Least Acceptable Value
Criteria Contributions to Decision Score

USACE weighting
- Cost
- Maximum Cancer Probability (Non-Barge Worker)
- Ecological Hazard Quotient
- Est. COC Conc in Fish / Risk-based Conc
- Complete Human Health Exposure Pathways
- Complete Ecological Exposure Pathways
- Ratio of Impacted Area to Facility Capacity

EPA weighting
- Cost
- Maximum Cancer Probability (Non-Barge Worker)
- Ecological Hazard Quotient
- Est. COC Conc in Fish / Risk-based Conc
- Complete Human Health Exposure Pathways
- Complete Ecological Exposure Pathways
- Ratio of Impacted Area to Facility Capacity
Adaptive Planning and Engineering

- Uncertainty is inherent to planning, design, construction, and O&M
- Adaptive management requires a framework for collecting and using information that results from:
 - Implementing a plan
 - Monitoring the performance of the plan
 - Learning
- The OR and MCDA provide suitable approaches
Risk Reduction Trajectories

- Risk
- Time

New information incorporated

Risk reduction goal
The Path Forward

• 3 principles relevant to transforming practice
 – Sediment remedial projects should be addressed as decision problems
 – Deliberation is essential to the successful resolution of risk-decision problems
 – Transforming practice requires commitment to change, experimentation, and learning