Technologies for Biogeochemical and Hydrogeologic Characterization and Their Integration for Site Remediation

Michelle M. Lorah
U.S. Geological Survey
MD-DE-DC Water Science Center
mmlorah@usgs.gov
• Complex hydrogeology
 • fractured rocks
 • low permeability layers; rock matrix

• Difficult contaminant mix
 • DNAPL
 • dissolved and highly sorbed mix
 • emerging contaminants

• Sensitive habitat or location
 • wetlands
 • bottom sediments
Biogeochemical Characterization-Why?

- Provide the remedy-MNA, bioremediation, biogeochemical reduction
- Secondary effects-alteration of natural biogeochemical conditions, or from presence of secondary contaminants
- Long-term efficiency
 - changes in transmissive plume with remediation
 - low permeability zones
 - “slow” processes key (back diffusion, sorption and desorption, abiotic and biotic degradation reactions)
Biogeochemical Characterization—How?

- MNA protocols provide good framework and tools
- Relevant protocols for organics, radionuclides, and non-radionuclide inorganic
- Three lines of evidence for chlorinated solvents

Monitored Natural Attenuation (MNA)

- **Removal of contaminant**
- **Geochem indicators** (DOC, redox, metabolites, pH, Cl)
- **Microbial activity**
Considerations

- History and stage of plume evolution
- DNAPL or LNAPL presence
- Sample key parts of plume, including “transition zones”
- Multilevel sampling-high resolution
- Spatial and temporal variability
- Interaction with and formation of solids

from *Monitored Natural Attenuation of Inorganic Contaminants in Ground Water, Volumes 1 and 2*
Dissolved plumes

Aerobic micro-zones around roots

Evapotranspiration/Phytoremediation

High Organic Carbon Sediment of Wetland (reducing conditions conducive to biodegradation)

Volatilization

Creek

Fe^{2+}

CH_{4}

NH_{3}

S^{2-}

DNAPL

AQUIFER

AQUITARD

WETLANDS- LARGE TRANSITION ZONE
(MODIFIED FROM LORAH ET AL., 2005)

Fig. 1. Possible interactions in the root zone of wetlands for wastewater treatment.
Canal Creek Area, Aberdeen Proving Ground

Chlorinated VOCs- Anaerobic degradation

Parent Contaminants

Chlorinated ethanes:
HCA = hexachloroethane
PtCA = pentachloroethane
1122TeCA = 1,1,2,2-tetrachloroethane

Chlorinated ethenes:
PCE = tetrachloroethene
TCE = trichloroethene

Chlorinated methanes:
CT = carbon tetrachloride
CF = chloroform
West Branch Canal Creek, Natural Attenuation Study Area: Redox

[Diagram showing the study area with various layers and zones marked, including Wetland, Aquifer, and Confining Units.]
West Branch Canal Creek, Natural Attenuation Study Area: VOCs

1,1,2,2-Tetrachloroethane (µg/L)

VERTICAL EXAGGERATION = 2.34X

VC

12DCA

12DCE

TeCA 2.0µM, 90cm
West Branch Canal Creek

Degradation in non-seep areas where relatively slow flow allows strongly reducing conditions.
MNA WBC2 Dechlorinating Consortium, developed to degrade 1,1,2,2-tetrachloroethane (TeCA)

Manchester, et al, 2011

WBC-2 Mole Fract (Daughter/TeCA) vs TeCA Half-life (days)

- VC
- tDCE
- cDCE
- TCE
- 12DCA
- 112TCA
- TeCA
- TeCA t1/2

CC Aquifer CC Wetland (23) CC Wetland (30) CC Aquifer CC Wetland (23) CC Wetland (30)
Standard Chlorine of Delaware, DNAPL Extent

- CB, DCBs, TCBs
- DCBs, TCBs
- Not indicative of DNAPL

USGS Study
- Wetland characterization
- Natural attenuation; enhanced bioremediation
- Feasibility of permeable reactive barrier

State Plane Delaware Transverse Mercator Projection
Chlorobenzenes-
Standard Chlorine of Delaware

- Anaerobic (reductive dechlorination)
 - CB serves as terminal electron acceptor
 - Separate e- donor required
 - rate decreases with decreasing number Cl

- Aerobic (oxidation)
 - O₂ required as electron acceptor
 - CBs utilized as C and e donor
 - Short-lived intermediates
 - rate increases with decreasing number Cl

- Chlorobenzenes
 - Trichlorobenzenes *
 - 135TCB, 124TCB, 123TCB
 - 70 (124TCB)
 - Dichlorobenzenes *
 - 14DCB, 13DCB, 12DCB
 - 75 (14DCB)
 - Chlorobenzene *
 - 100
 - Benzene *
 - 5
 - CO₂, CH₄
 - Drinking Water
 - MCL µg/L

* Parent contaminant
SCD, VOCs in Peepers

Upland Wells, Oct. 2011
Tools to Evaluate Biodegradation

- **Molecular Biological Tools**
 - Quantitative PCR: Counts genes, taxonomic or functional, for specific targets; micro-arrays (QuantArray, MI)
 - Terminal Restriction Fragment Length Polymorphisms (TRFLP): fingerprint of the microbial community
 - Next-generation sequencing (high throughput): in depth profile of the microbial community; Illumina, 454 sequencing

- **Stable Isotopes**
 - SIP, Stable Isotope Probing: 13C used as a tracer
 - CSIA, Compound Specific Isotope Analysis: isotopic fractionation in parent and metabolites

Bio-Traps, Microbial Insights

- **GEO**
 - GEO anions, VFAs

- **COC**
 - COCs, redox

- **MICRO**
 - Bio-sep beads, microbes

- **13C Amendments donor**

Bio-Sep® beads
- Bio-Sep® beads provide a large surface area for microbial attachment
In situ microcosms with Bio-Traps (Microbial Insights)

- Two each northwest and northeast sites
- Three standard treatments and three 13C-labeled treatments
 - MNA, monitored natural attenuation (no amendments)
 - Lactate, biostimulated with lactate + chitin
 - WBC-2, bioaugmented
- 13C-labeled chlorobenzene
- QuantArray analysis of species and functional genes for aerobic and anaerobic biodegradation
ISM Results:

- Complete degradation of DCBs evident in WBC-2 treatment in standard ISMs.
- 13C-labeled ISMs showed complete degradation of monochlorobenzene in MNA and WBC-2.

Results:

<table>
<thead>
<tr>
<th></th>
<th>WBC-2 13C</th>
<th>MNA 13C</th>
</tr>
</thead>
<tbody>
<tr>
<td>k (per day)</td>
<td>0.019</td>
<td>0.021</td>
</tr>
<tr>
<td>Half life (days)</td>
<td>37.1</td>
<td>33.5</td>
</tr>
</tbody>
</table>

- Pre-Deployment:
 - 66% for WBC-2 13C
 - 69% for MNA 13C
Bio-Traps: 13C-labeled Chlorobenzene

Incorporation in dissolved inorganic carbon = Mineralization

Incorporation in PLFA = Metabolism (C for growth)

13C Utilized for CO2, 13C Chlorobenzene

13C Utilized for Biomass, 13C Chlorobenzene

aerobic metabolism
QuantArray Microbial Analysis - Anaerobic

---Reductive dechlorination---

Reductive dechlorination:
DHC, Dehalococcoides spp.
TCE, tceA reductase
VCR, vinyl chloride reductase
BV1, vinyl chloride reductase
DHBt, Dehalobacter spp.
DHG, Dehalogenimonas spp.

BTEX, PAHs and alkanes:
BCR, Benzoyl coenzyme A reductase
bssA, benzylsuccinate synthase
assA, alkylsuccinate synthase
QuantArray Microbial Analysis- Aerobic

- **pMMO**, particulate methane monooxygenase
- **sMMO**, soluble methane monooxygenase
- **TCBO**, trichlorobenzene dioxygenase
- **RDEG**, toluene monooxygenase 2
- **RMO**, toluene monooxygenase
- **PHE**, phenol hydroxylase
- **EDO**, ethylbenzene/isopropylbenzene dioxygenase
- **PM₁**, *Methylibium petrophilum* PM₁
- **ALKB**, alkane monooxygenase
Changing Paradigm

Previous paradigm for chlorinated VOCs:

- Anaerobic reductive dechlorination only process in apparent low redox zones
- Aerobic oxidation requires measurable oxygen
- Anaerobic oxidation responsible for losses of lower VOCs at anaerobic plume fringes

Perils of Categorical Thinking: “Oxic/Anoxic” Conceptual Model in Environmental Remediation

Isolation of an aerobic vinyl chloride oxidizer from anaerobic groundwater

Sustained Aerobic Oxidation of Vinyl Chloride at Low Oxygen Concentrations

Concurrent and Complete Anaerobic Reduction and Microaerophilic Degradation of Mono-, Di-, and Trichlorobenzenes

Fullerton et al. 2014

Bradley 2012

Gossett 2010

Bradley and Chapelle 2011

Burns et al. 2013
Bioaugmentation: Fractured sedimentary rock aquifer, former Naval Air Warfare Center (NAWC)

USGS
Toxic Substances Hydrology Program
New Jersey Water Science Center
National Research Program

VOCs vs Time Injection Well - 36BR-A

“stall”?
Matrix diffusion/
DNAPL dissolution

Chloride vs Time
Injection Well 36BR-A

Currently investigating
changes in native and
bioaugmented microbial
communities-
toxicity/inhibition effects
cause growth of “partial
dechlorinators”?

(Modified from Tom Imbrigiotta)
Use of laboratory testing to characterize microbial communities and biodegradation processes

- Site characterization
- Feasibility evaluation
- Technology development
- Pilot test remediation

Native Bioreactor
Bioaugmented Bioreactor

Polyethylene and polyurethane support matrix for building biofilm of native or bioaugmented microorganisms
SCD Bioreactors - Aerobic vs. Anaerobic

- occurrence of aerobic and anaerobic degradation by native bacteria
- aerobic degradation faster than anaerobic biodegradation
- WBC-2 able to degrade chlorinated benzenes and benzene anaerobically
- accumulation of daughter products not evident
Questions?
Acknowledgements

USGS MD-DE-DC
Fate and Bioremediation Team
Michelle Lorah
Jessica Teunis
Mastin Mount
Michael Brayton
Charles Walker
Roberto Cruz
Emily Majcher
Anna Baker
Luke Myers

NRP Reston Collaborators
Isabelle Cozzarelli
Denise Akob
Allen Shapiro
Dan Goode
Tom Imbrigiotta
Claire Tiedeman

CRADA-Geosyntec Consultants
Duane Graves

Toxic Substances Hydrology Program

USEPA Region III

US Army, Aberdeen Proving Ground Installation Restoration Program

DoD EPA
DoE
Strategic Environmental Research and Development Program