Advanced Simulation Capability for Environmental Management (ASCEM) Overview and Example Application

Mark Freshley¹, Vicky Freedman¹, Tim Scheibe¹, David Moulton², Paul Dixon², and Justin Marble³

Federal Remediation Technologies Roundtable, May 14, 2014

¹Pacific Northwest National Laboratory
²Los Alamos National Laboratory
³U.S. Department of Energy, Office of Environmental Management
What is ASCEM?

- **Advanced Simulation Capability for Environmental Management**
 - Modeling toolset currently under development for understanding and predicting subsurface contaminant fate and transport

- **Organized into three thrust areas**
 - **High Performance Computing** – open-source, high performance simulator (Amanzi)
 - **Platform** – tools that facilitate model setup and simulation execution (Akuna)
 - **Applications** – demonstrate the tools through applications to real sites

- **Completed initial user release of toolset**

ascemdoe.org
User Environment

Akuna

[Diagram showing the User Environment with components like Velo, Connection, Toolset, Agni, and HPC Computing Environment]
Application to Hanford BC Cribs

- Former plutonium production site
 - Waste disposed from 1956 to 1958 to 6 cribs
 - Funnel-shaped with sloping sides (~3 x 3 m wide)
- Located a few meters bgs
- Thick vadose zone (~107 m)
- Primary contaminant of concern $^{\text{99}}$Tc
- Traditional remediation technologies are ineffective
- Evaluate uncertainty impact on remediation

(Rucker and Fink 2007)
Problem Description

- **Boundary Conditions**
 - > 10 million gallons liquid waste released at 6 cribs
 - 1956 – 1958
 - 99Tc primary contaminant
 - Source concentrations $\sim 10^6$ pCi/L
 - Recharge at surface
 - Water table boundary at the bottom of the domain

- 320 m x 280 m x 107 m (~455K grid blocks)

- Executed simulation from 0 – 2008
 - 0 – 1956 period to attain steady state flow field
 - 1956 – 2008 transient
Major Stratigraphy
Generated 100 realizations of three-dimensional lithofacies distributions using geostatistical model

- Identified by k-means cluster analysis of 232Th and 40K data (spectral gamma log data)
- Three lithofacies identified, log data from 5 wells
Geologic Realizations

- Selected 10 realizations for demonstration
- Layering is the same, but small-scale variability in heterogeneities captured
Property Assignments and Boundary Conditions

Hydraulic Property Input

Boundary Condition Input
Parameter Estimation

- Permeability and porosity estimation
- Moisture content and 99Tc measured in 2008 at Boreholes A & C
- Data obtained from database, accessed through web interface, and exported to Akuna
Parameter Estimation

Borehole A Tc-99 Concentration

Borehole A Moisture Content

Borehole C Moisture Content

Elevation (m)

Concentration (Ci/L)

Moisture Content

Observed
GR 01
GR 02
GR 03
GR 04
GR 05
GR 06
GR 07
GR 08
GR 09
GR 10
Simulation 1956 – 2008

Tc-99 (pCi/L)

Facies 1 Facies 2 Facies 3

Year = 1956

through Crib 15, 17, 19 at y=122.5

through Crib 14, 16, 18 at y=117.5

through Borehole A and near Crib 17, 18
Uncertainty Quantification

- Varied recharge rate for 100 simulations for 2012 – 3000
 - Rates represent management actions (1 – 75 mm/yr)
 - Soil desiccation
 - Surface barriers
 - No-action
 - Soil flushing
- Metrics
 - Peak concentration and arrival time at water table
 - Time at which a threshold concentration is exceeded
- Launched on 9600 processor cores, 96 per simulation

Screenshot from UQ Toolset: Histogram of Recharge Rates
Uncertainty Quantification

- Time to peak occurs within 200 years, small variation with recharge rate

 a) Mean and 95% confidence intervals for 99Tc breakthrough at boreholes A and C

 b) Histogram of time to reach peak concentration
Uncertainty Quantification

- Compare breakthrough curves for one conceptual model realization to all 10
 - Confidence intervals are wider when 10 realizations of the conceptual model are considered
 - Upper bound is ~85% higher at Borehole A for all ten models than for GR01

Mean and 95% confidence intervals for the 99Tc breakthrough curve at Boreholes A and C for single and multiple geologic realizations
Conclusions

- ASCEM facilitates model setup, execution, analysis, and visualization
- High performance computing enables multiple realizations of complex model through reduction in computational time
- Simulations of BC Cribs provides insight on controlling processes and properties for 99Tc transport in the subsurface
 - Baseline conditions for “no action” alternative
 - Variation in recharge rate from soil desiccation and surface barriers
 - Variability in conceptual models impacted the magnitude of peak concentrations, but had minor impact on arrival times
Thank You!

Contacts:

Mark Freshley, Pacific Northwest National Laboratory Site Applications
(mark.freshley@pnnl.gov)

Paul Dixon, Los Alamos National Laboratory ASCEM Multi-Laboratory Program Manager
(p_dixon@lanl.gov)

Justin Marble, DOE EM ASCEM Federal Program Manager
(justin.marble@em.doe.gov)

http://ascemdoe.org/