Case Studies of Advances in Bioremediation of Organics: Part 1

May 29, 2020

Anthony Danko, Ph.D., P.E.
Environmental Engineer
NAVFAC EXWC
Disclaimer

• This seminar is intended to be informational and does not indicate endorsement of a particular product(s) or technology by the Department of Defense or NAVFAC EXWC, nor should the presentation be construed as reflecting the official policy or position of any of those Agencies.

• Mention of specific product names, vendors or source of information, trademarks, or manufacturers is for informational purposes only and does not constitute an endorsement or recommendation by the Department of Defense or NAVFAC EXWC. Although every attempt is made to provide reliable and accurate information, there is no warranty or representation as to the accuracy, adequacy, efficiency, or applicability of any product or technology discussed or mentioned during the seminar, including the suitability of any product or technology for a particular purpose.

• Participation is voluntary and cannot be misconstrued as a new scope or growth of an existing scope under any contracts or task orders under NAVFAC.
Outline

• Chlorinated Solvents
 – Molecular Tools
 – Electrokinetic Bioremediation

• 1,4-Dioxane
 – 14C Assay
 – Aerobic Cometabolism using Multiple Primary Substrates
Case Study – qPCR and 16S Sequencing at NAS JAX

Site Background

• Operable Unit 3 (OU3) occupies 134 acres on eastern side of installation
• Industrial/commercial land use
• Fleet Readiness Command (FRC) (formerly NADEP) primary tenant on installation since 1940s
• Former dry cleaner facility located within OU3 property
• 7 identified groundwater plumes (Areas A – G)
• Buildings 780 and 106 also sources of contamination
Case Study – qPCR and 16S Sequencing at NAS JAX
Enhanced In Situ Bioremediation Application

- 50 DPT injection locations
- 2 injection intervals per location
- 145,000 gallons of an 0.7% emulsified vegetable oil solution (EDS-ERTM)
- Average flow rate of 1.8 gpm
- 100 liters of KB-1® and KB-1® Plus injected
- Bromide tracer used
- 10 performance monitoring wells
- 4 soil gas probes
Case Study – qPCR & 16S Sequencing at NAS JAX
C VOC Results

Legend
- Performance Monitoring Well
- Soil Gas Probe
- UIC Monitoring Well
- Temporary DPT Injection Location

Target Treatment Area (TTA)

Chloroethenes/Methane (µg/L)
log10 (vcrA)

PZ-01

Legend
- PCE
- TCE
- cDCE
- VC
- Ethene
- Methane
- vcrA

PZ-02

Graphs show the performance monitoring data for wells PZ-01 and PZ-02 with various compounds monitored over time.
Case Study – CVOC qPCR & 16S Sequencing at NAS JAX

Microbial Composition

Upgradient Well MW-40S

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>MW-40S</th>
<th>PZ-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehalococcoides</td>
<td>0.01%</td>
<td>5%</td>
</tr>
<tr>
<td>Geobacter</td>
<td>0.09%</td>
<td>24%</td>
</tr>
<tr>
<td>Methylobacter</td>
<td>9%</td>
<td>9%</td>
</tr>
</tbody>
</table>

Pilot Test Well PZ-02

• Anticipate • Innovate • Accelerate •
Electrokinetic (Ek) Bioremediation

- Low permeability silts and clays \((K < 10^{-7} \text{ m/s}) \) present challenge for amendment distribution
- This technology leverages the electrical properties of the amendments to promote distribution
- Technology applies an electric current to facilitates electromigration and electro-osmosis
- Successfully demonstrated in Denmark to treat PCE
 - Generated lactate flow of 3 to 5 cm/day through clay
Ek-Bio Demonstration at NAS Jacksonville, FL
(ESTCP ER-201325)

• Potassium lactate and KB-1 (2 Stages)
• Stage 1
 - 100 gallons, 60% lactate
 - 4 L KB-1 into each of 8 supply wells & 2 L KB-1 into each of 9 electrode wells
 - Introduced over 6 months
PCE at 15 – 40 mg/L in clay

NC – not characterized; SP – sand; CL – clay
Ek-Bio Demonstration at NAS Jacksonville, FL (ESTCP ER-201325)

Results (cont.)

Supply Wells in Yellow
Electrode Wells in RED
Monitoring Well in Grey

- Anticipate - Innovate - Accelerate -
• Chlorinated Solvents
 – Molecular Tools
 – Electrokinetic Bioremediation

• 1,4-Dioxane
 – 14C Assay
 – Aerobic Cometabolism using Multiple Primary Substrates
1,4-Dioxane – ESTCP 201730

• Many 1,4-dioxane plumes appear to attenuate; how to prove?

• Multiple lines of evidence approach, including:
 - Concentration trend analysis; plume mass estimates; CSIA; biomarkers

• More direct evidence of aerobic biodegradation may be needed
 - Challenge: Aerobic biodegradation of 1,4-dioxane yields CO₂, biomass, and possibly soluble intermediates; how to document product formation?

• \(^{14}\)C assays quantify products and allow for measurement of a rate coefficient

Adamson et al., 2014

n = 103 sites where dioxane and chlorinated solvents co-occur
What is BioPIC (ESTCP ER-201129)?

- Bioremediation Pathway Identification Criteria
- Updated protocol for evaluating natural attenuation
- Guides users in the selection of MNA, biostimulation and/or bioaugmentation or other remedial technology
- Spreadsheet driven (Excel™)
- Currently limited to chlorinated ethenes
 - Development of ‘BioPic 2.0’ for 1,4-Dioxane and associated cVOCs (ESTCP 201730)

To Obtain BioPIC
Search under ER-201129 Report at SERDP-ESTCP
1,4-Dioxane – ESTCP 201730

GOAL: Develop tool that will walk RPMs through this process for evaluating MNA

- Extract Rate Constant from Field Data or 14C Assay
- Use Model to Forecast Conc. at Point of Compliance
- Consider Active Remedial Options
- Max Conc. \leq Standards
 - No
 - Yes: MNA Plausible. Support with Second Lines of Evidence
1,4-Dioxane – ESTCP 201730

- Geographic diversity
 - ≥ 4 states; East coast, West coast, Midwest
- Mix of Department of Defense and industrial sites (7 sites)
- All exhibit a decrease in C/C₀ along plume axis
 - Range of 1,4-dioxane concentrations: 163-11,000 µg/L; median = 169 µg/L
 - Range of VOC co-contaminant concentrations: non-detect to 6 mg/L; 1,1-DCE from non-detect to 162 µg/L
- 3-5 wells sampled per site; repeat samples for 2 sites
- Monitored: Δ¹⁴C products; Δ1,4-dioxane; VOCs; ΔO₂
 - Also included CSIA and relevant biomarkers
Basic Test Procedure: 14C Assay

Collect GW samples: Triplicate serum bottles + 2 L

Ship overnight on ice

Warm overnight to room temperature

Prepare triplicate filter sterilized GW controls from 2 L sample

Add purified 14C-1,4-dioxane

Measure initial conditions: 14C, 1,4-DX, VOCs, O$_2$

Sample weekly (5 mL) for 6 weeks: measure 14C products

Calculate $k_{net} = k_{GW} - k_{FSGW}$

and net 95% Confidence Interval

End of incubation analyses: 14C products, 1,4-DX, VOCs, O$_2$
1,4-Dioxane – ESTCP 201730

100 mL GW → HCl, N₂ → SPE → NaOH → Liquid Scintillation Counter, count ¹⁴CO₂ (A)

Solid Phase Extraction (SPE), retains DX → Liquid Scintillation Counter, count ¹⁴C-nonvolatile products (B)

Concentrate by lyophilization → HPLC → Collect fractions → Liquid Scintillation Counter quantify non ¹⁴CO₂ metabolites (e.g., glyoxylate)

∑(A+B)

Time (weeks)
Overall

- 36 well samples analyzed
- 12 have statistically significant rate coefficients
- Maximum rate coefficient* = 0.096 yr\(^{-1}\)
 Median rate coefficient = 0.0061 yr\(^{-1}\)

1,4-Dioxane – ESTCP 201730

\[k_{\text{net}} = 0.096 \text{ yr}^{-1} \]
\[t_{\frac{1}{2}} = 7.2 \text{ yr} \]
(95% CI = 6.3-9.6 yr)

- **36 well samples analyzed**
- **12 have statistically significant rate coefficients**
- **Maximum rate coefficient* = 0.096 yr\(^{-1}\)**
 Median rate coefficient = 0.0061 yr\(^{-1}\)
- Highest rate constants at the lowest VOCs and 1,1-DCE
- Rate constants found at
 - 6.3 µM VOCs
 - 29 µg/L 1,1-DCE (0.30 µM)
- VOCs likely slow in situ rates
1,4-Dioxane – ESTCP 201733

Multiple Primary Substrates: Isobutane + Methane

Process A: Isobutane + Oxygen
- Stimulate Isobutane degraders
- 1,4-D targeted
- 1,1-DCE and select other CVOCs

Process B: Methane + Oxygen
- Stimulate methanotrophs
- TCE targeted
- Select other CVOCs
1,4-Dioxane – ESTCP 201733

NAS North Island: Operable Unit 11

1. Waste disposal–surface impoundments
2. Shallow aquifer (25’-40’ BGS)
3. Neutral pH
4. Comingled 1,4-D and CVOCs (mg/L)

1,4-D Plume

TCE Plume

• Anticipate • Innovate • Accelerate •
• Sandy Aquifer: 25’- 40’ bgs
• Low permeability unit at 40’
1,4-Dioxane – ESTCP 201733

Discrete groundwater sampling results

• Concentrations generally increasing with depth

• Plume located from ~30’ to 40’ bgs

<table>
<thead>
<tr>
<th>Boring ID</th>
<th>HPT-1</th>
<th>HPT-2</th>
<th>HPT-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth (ft, bgs)</td>
<td>29</td>
<td>34</td>
<td>39</td>
</tr>
<tr>
<td>Compound/Concentration</td>
<td>µg/L</td>
<td>µg/L</td>
<td>µg/L</td>
</tr>
<tr>
<td>TCE</td>
<td><5</td>
<td>155</td>
<td>1360</td>
</tr>
<tr>
<td>1,1-DCE</td>
<td><5</td>
<td>135</td>
<td>1168</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td>0.94J</td>
<td>69.8</td>
<td>427</td>
</tr>
<tr>
<td>cis-1,2-DCE</td>
<td><5</td>
<td>72</td>
<td>328</td>
</tr>
<tr>
<td>1,1-DCA</td>
<td><5</td>
<td>13</td>
<td>136</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td><5</td>
<td><5</td>
<td>6</td>
</tr>
<tr>
<td>Chloroform</td>
<td><5</td>
<td><5</td>
<td>5</td>
</tr>
<tr>
<td>1,2-DCA</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
<tr>
<td>PCE</td>
<td><5</td>
<td><5</td>
<td>4J</td>
</tr>
<tr>
<td>trans, 1,2-DCE</td>
<td><5</td>
<td><5</td>
<td>3J</td>
</tr>
<tr>
<td>1,1,2-TCA</td>
<td><5</td>
<td><5</td>
<td><5</td>
</tr>
</tbody>
</table>
1,4-Dioxane – ESTCP 201733

Microcosm Test

Objectives

1. Can indigenous organisms be stimulated to degrade 1,4-D and target cVOCs?
 - Evaluating several alkane/alkene gases

2. Are low levels achievable?

3. Nutrients required/beneficial?

4. Bioaugmentation required?
Isobutane Treatments

- No isobutane uptake in 107 days
- Suspect 1,1-DCE toxicity
- ENV493 added on day 107
- Rapid transformation of 1,1-DCE
- Uptake of isobutane (3 days)
Isobutane Treatments

- ENV493 added on day 107
- 3 successive spikes of isobutane
- Rapid transformation of 1,4-dioxane, cis-DCE and chloroform
1,4-Dioxane – ESTCP 201733

Isobutane Treatments

- Limited cometabolism of TCE by ENV493
- Mixed methanotroph culture ENV494M and methane added
- TCE degraded and methane uptake observed
Both Cultures Isolated from the Site
1,4-Dioxane – ESTCP 201733

Preliminary MODFLOW Modeling Simulation

Groundwater Modeling

- Groundwater recirculation
 - 1 extraction well
 - 5 injection wells
 - 15’ well spacing
- ~8-10 gpm – 8 hr/day
- Substrate gas & nutrient addition
- Bioaugmentation

7 gpm; 8 hrs day; 60 days
Acknowledgements

• ESTCP ER-201325 (Geosyntec, USACE, NAVFAC SE)
• ESTCP ER-201730 (NAVFAC EXWC, GSI, Clemson Univ., Scissortail, Independent Consultant)
• ESTCP ER-201733 (NAVFAC EXWC, APTIM, Oregon St. Univ., NC St. Univ.)
• NAVFAC SE and SW
Thank you!