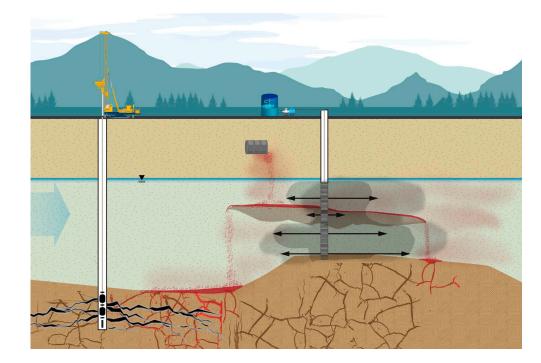
Bioremediation: Recent Advances in Site Characterization

High-Resolution Site Characterization

May 16, 2023

Tamzen Macbeth Jeffrey Davis Kent Glover Karla Leslie



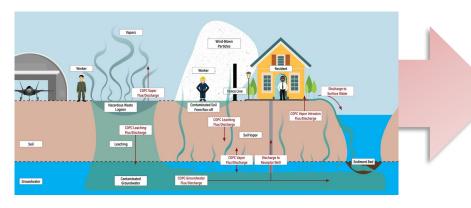
Challenges with Bioremediation

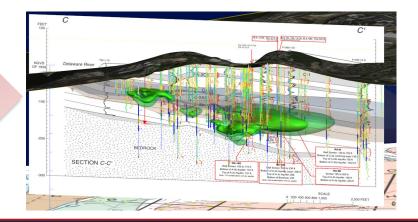
- Success is driven by efficient amendment delivery
- Heterogeneity in aquifers causes fluid bypass to preferential pathways
- Multiple/persistent sources affect mobility/treatment time
 - DNAPL

2

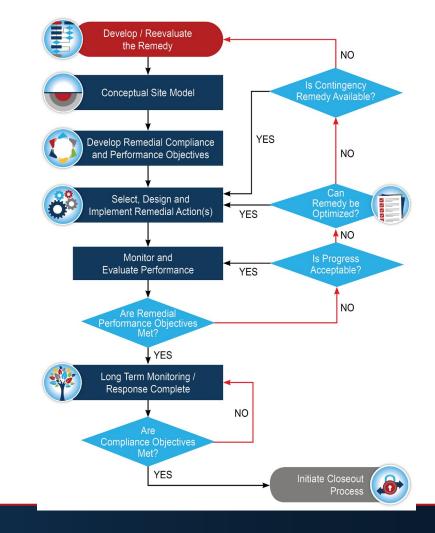
- Sorption
- Matrix back diffusion

Conceptual Site Model Resolution


3

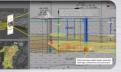

Develop a conceptual site model at an appropriate scale to account for site heterogeneity to characterize:

- Physical properties
- Chemical of concern (COC) distribution
- Fate and transport

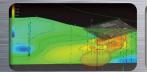

High-resolution site characterization tools collect data on relatively small scales with a greater data acquisition rate than conventional characterization tools and approaches.

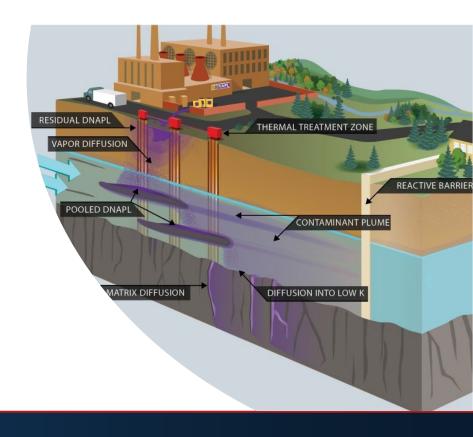
HR-CSM During the Site Life Cycle

- HRSC to Improve Site CSM
- HRSC to Support Remedial Objectives
- HRSC to Support Technology Selection and Design
- HRSC for Remedy Optimization and Closure


AFCEC BAA-704: HRSC Guidance Document and Tool

High-Resolution Site Characterization Guidance for Groundwater Restoration Sites


Prepared for the Air Force Civil Engineer Center May 2023



HRSC Guidance Purpose

- Developing robust CSMs
 - Incorporating site complexities = essential to remedy design, implementation, optimization
- Fill data gaps and fulfill site objectives
 - Uses a combination of HRSC and standard tools
- HRSC tools are more available
 - More tools = increased awareness of how site condition heterogeneities and complexities impact CSM development
- HRSC tools can re-evaluate failed remedies
 - Lack of site understanding = remedies more likely to fail

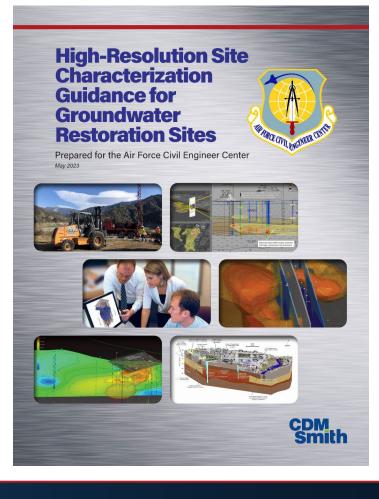
Guidance Outline

Section 1: Introduction

Section 2: Building a Conceptual Site Model

• Elements of a Conceptual Site Model

Section 3: High Resolution Site Characterization Tools


- Definition and Description of HRSC Tools
- Conventional Tools Applied at High Resolution

Section 4: High Resolution Conceptual Model Role is Site Life Cycle

- Definition of Site Life Cycle
- Utilizing HRSC Tools at each Step of the Site Life Cycle

Section 5: Implementing this HRSC Guidance and Tool

Section 6: Demonstration Case Study

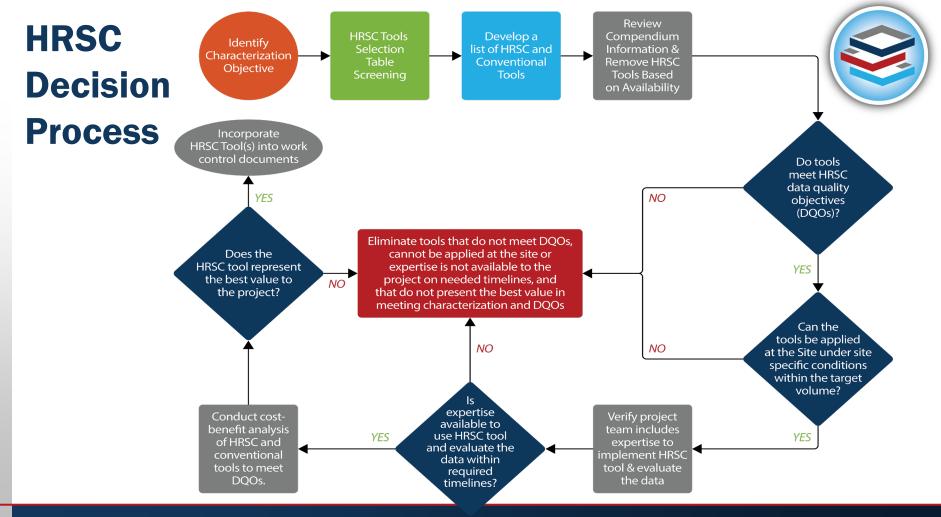
Using the HRSC Guidance

HRSC TOOL SELECTION TABLE

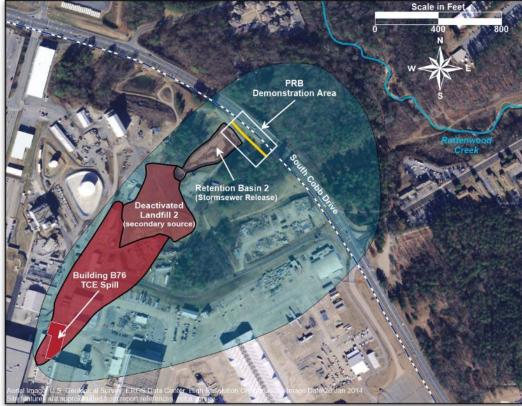
HRSC TOOL SELECTION PROCESS

TOOL SELECTION CRITERIA INPUTS

Step 1: Identify Site Characteristics (select one item per group) **Component of the CSM*** Formation Type* Aquifer Properties Unconsolidated Chemical Distribution Bedrock Chemical Attenuation Step 2: Identify Type of Parameter/Data Required (multiple selections permitted) Hydrogeology Chemicals **Chemical Attenuation** Geology Lithology Depth to Water Table LNAPL **Biotic Degradation** Lithologic Contacts Water Content DNAPL Abiotic Degradation Primary Porosity Hydraulic Conductivity Groundwater COC Concentration Sorption Preferential Flow Paths Diffusion Secondary Porosity: Fractures Geochemical Tracking Structural Faults Soil COC Concentration Groundwater Discharge Competence Borehole Flow COC Flux **Borehole Condition** Fracture Connectivity Step 3: Identify Level of Data Quality (select at least one item) Minimum selections have not been made. Please select one Data Quality* item for input groups with an asterisk All Screening-level Qualitative Semiguantitative Quantitative


DEVELOP A HRSC DATA COLLECTION PROGRAM

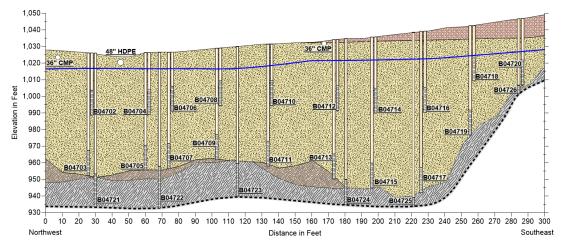
Too	Method/Tool	Relative Cost	Data Type/Data Quality Objectives	Advantages/Applications	Disadvantages/Limitations
Too Sur	Dipmeter References ITRC 2015 USEPA 1993, 2004, 2016 Williams 1990	 \$\$ \$1.00-2.00 per foot \$2,500 - 5,000 per day* 	 Physical – geologic structure (fractures and bedding planes) Four downhole logs of resistivity and two caliper traces provides quantitative measurement of location and orientation of fractures and bedding planes 	 Radius of investigation near borehole surface Can only be used in open borehole 6 to 20 inches in diameter in the saturated zone Used in both bedrock and unconsolidated soil/sediment; more accurate measuring bedding planes Logging rate 8 to 20 feet per minute 	 Minimum borehole diameter of 6 inches for accurate measurement of bedding planes and fractures Under most conditions the acoustic televiewer provides more accurate measurements of fractures Cannot be used concurrently with other probes
Teol Compution Summary (10 age) Summary (10 age) Surface Geophysics Surface Geophysics Surface Geophysics Computing Control Computing Control Control Computing Control Computing Control Computing Control Computing Control Computing Control Control Computing Control Control	Induction Resistivity (Conductivity logging) References ITRC 2015 USEPA 1993, 2004, 2016 Williams 1993	 \$\$ \$1.00 - 2.00 per foot \$2,500 - 5,000 per day* 	 Physical – lithology and water content Chemical – salinity Downhole log of conductivity measurements provides semi-quantitative information on lithology, salinity of formation water, and water content 	 Radius of investigation 30 inches Can be used in open or cased (PVC) borehole 5 to 20 inches in diameter in the vadose and saturated zones Used in both bedrock and unconsolidated soil/sediment Logging rate up to 60 feet per minute Not sensitive to borehole diameter 	 Results are low resolution (as they are averaged over 1-2 meters) Interferences due to metallic minerals or objects Low signal and resolution in low conductivity environments Cannot be used concurrently with other probes
Properties to status (5) Properties to status (5) Substat (5) Subst	Nuclear Magnetic Resonance (NMR) References Baker 2015 ITRC 2015 Vista Clara 2020 USEPA 1993, 2004	 \$\$ \$1.50 - 3.00 per foot \$2,500 - 5,000 per day* 	 Physical – water content (above water table) and porosity, grain size distribution, hydraulic conductivity (below water table) With confirmation samples lithology and geology can be determined Measurements of hydrogen provide a semi-quantitative downhole log of physical parameters 	 Diameter of investigation 5 to 10 inches Can be used in open or cased (PVC) borehole 2 to 9 inches in diameter in the vadose and saturated zones. Limited availability of a tool capable of deployment in 2-inch boreholes Used in both bedrock and unconsolidated soil/sediment Logging rate 0.5 to 3 feet per minute NAPL identification in progress 	 Quantitative measurements limited to unconsolidated sandy sediments and require other information to calibrate (e.g. slug or aquifer tests) Insensitive to individual fractures (porosity must be above 3 percent) Not widely used concurrently with other probes
Attenution Attenution Conventional Conventio	Magnetometric Resistivity (MMR) References Asten 1988 ITRC 2015 Willowstick 2016	AquaTrack \$\$\$ \$100,000 – 300,00 per survey	 Physical – groundwater flow paths, lithology, geology, and structure Measurements of the magnetic field provide a qualitative 2-D or 3-D map of groundwater flow paths, lithology, geology, and structure 	 Radius of investigation dependent upon survey configuration and electrode spacing Can be used in open or cased (PVC) borehole in the vadose and saturated zones Used in both bedrock and unconsolidated soil/sediment 	 Not widely commercially available, proprietary version AquaTrack available only through Willowstick Technologies Results dependent upon the electrical connectivity in the subsurface Cannot be used concurrently with other probes



Demonstration Case Study Air Force Plant 6

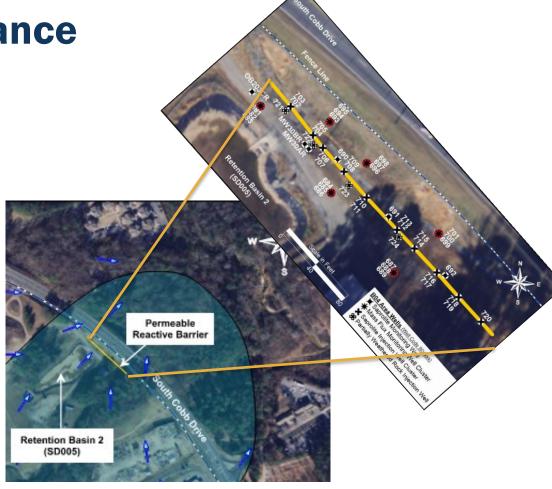
B04 Area History

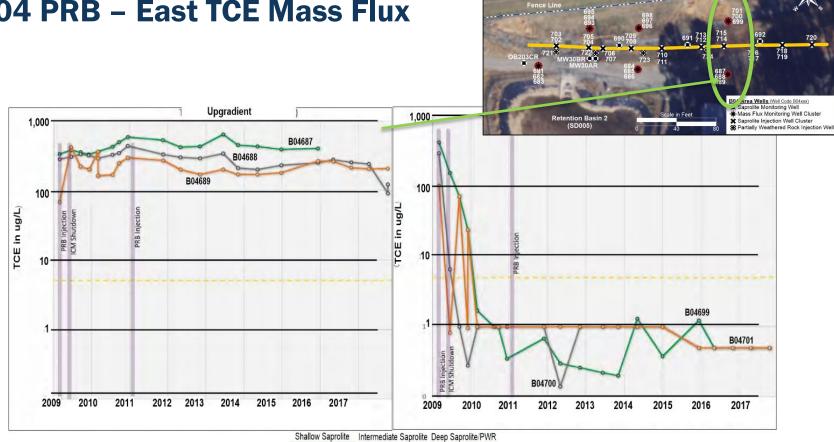
- Minor historic spills/ releases suspected
- 1983 Building B76 TCE spill, ~13,000 lbs.
 - Entered storm sewer and flowed to retention basin
 - Suspected DNAPL
- Possible waste oil/solvent disposal in Landfill 2


Remedy: Permeable Reactive Barrier (PRB)

- Reduce onsite volatile organic compounds (VOC) mass so monitored natural attenuation (MNA) results in offsite compliance
- Cleanup to Groundwater Protection Standards-MCLs
- PRB Treatment Objective: >300 ug/L TCE
 - 70% VOC mass flux reduction across the PRB to stabilize/shrink the offsite plume and support MNA

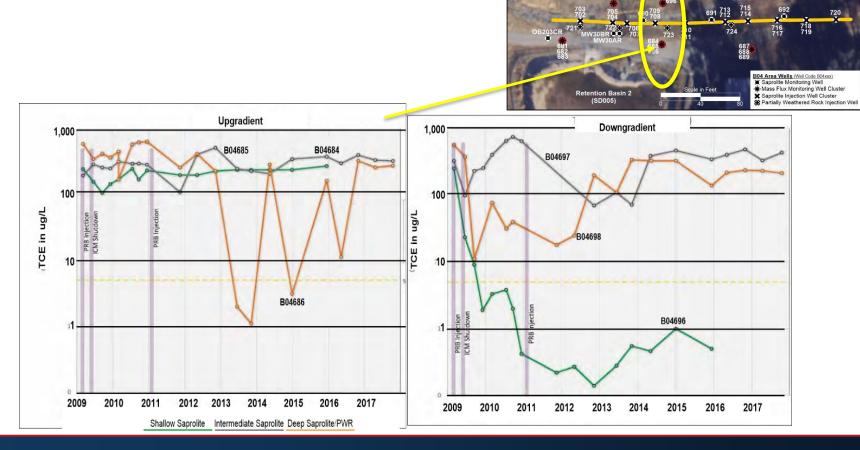
B04 PRB Construction


- PRB trench
 - 300 feet long and 2.5 feet wide and up to 90 feet deep
- Backfill
 - Backfilled with fine- to medium-grained sand and biopolymer
- Injection well installation
 - Installed deep (9) and shallow (10) saprolite injection wells in the PRB trench
 - Installed 4 PWR injection wells below the PRB

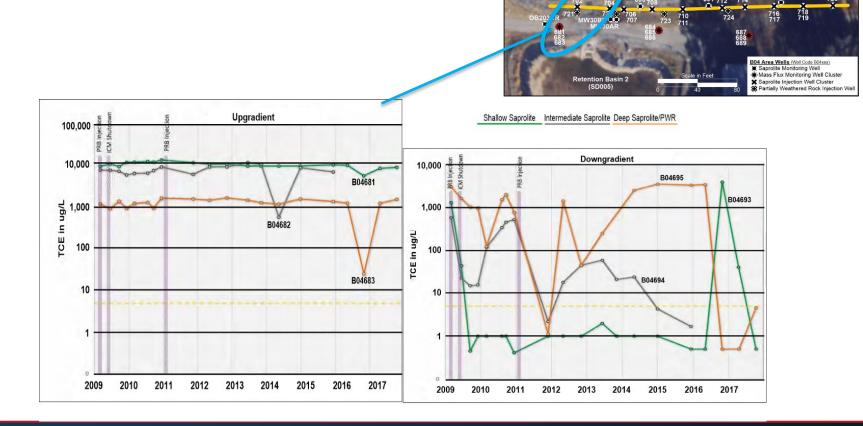


2009	2010	2011	2013	2018
 98,321 gal with 2.4% 3DMe® (oil, lactates, & polylactates) One PRB INJ well surfaced. 	 35,673 gal of 1.7% bicarbonate solution Four PRB INJ wells surfaced Fouling discovered in PWR INJ wells 	 77,858 gal with 5.2% 3DMe® and bicarbonate Four PRB and one PWR INJ wells surfaced. 	 9,766 gal with 3.7% 3DMe® Three planned PRB INJ wells surfaced and four others substituted 	•~94,526 gal with 2.4% 3DMe® with bioaugmentation • Four PRB wells surfaced

B04 PRB Performance – VOC Mass Flux


- 3 up- and 3 down-gradient clusters
- Upper, middle, and lower saprolite
- 2007 baseline derived from a regional hydraulic model
 - Each well has a fixed crosssectional area and flow for all measurements
 - Concentration is the only variable
 - Only TCE is evaluated

South Cobb Drive


B04 PRB – East TCE Mass Flux

South Cobb Drive

Fence Line

B04 PRB – Central TCE Mass Flux

South Cobb Drive

Fence Line

B04 PRB – West TCE Mass Flux

B04 Area PRB: Data Quality Objectives

Develop more accurate and appropriate volatile organic compound (VOC) mass flux estimates.

Preliminary site recommendations included conducting a MIP/HPT evaluation.

onaraotenzo roz acoraaation ana oonaaot a mass salanoo mui acoraaation sy prouaots.

 \checkmark

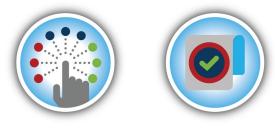
(C)

Assess the TCE hotspot upgradient of the PRB near monitoring well OB203CR and TCE bypassing northwest of the PRB that could be affecting offsite monitoring results.

Assess the injected amendment distribution and causes of the observed surfacing and well fouling within the PRB.

B04 Demonstration: Use of HRSC Guidance Document and Tool

HRSC Guidance Tool Selections


Component of the CSM: Aquifer Properties

Step 1: Identify Site Characteristics (select one item per group)

Component of the CSM*	•	Formation Type*		
Aquifer Properties	Х	Unconsolidated	Х	
Chemical Distribution		Bedrock		
Chemical Attenuation				

Step 2: Identify Type of Parameter/Data Required (multiple selections permitted)

Geology		Hydrogeology			
Lithology		Depth to Water Table			
Lithologic Contacts		Water Content			
Primary Porosity	Х	Hydraulic Conductivity	Х		
Secondary Porosity: Fractures		Preferential Flow Paths	Х		
Structural Faults		Groundwater Discharge	Х		
Competence		Borehole Flow			
		Borehole Condition	Х		
		Fracture Connectivity			

- Develop more accurate and appropriate volatile organic compound (VOC) mass flux estimates.
 - Hydraulic conductivity
 - Groundwater flux
- Assess the TCE hotspot upgradient of the PRB and TCE bypassing northwest of the PRB.
 - Hydraulic conductivity
- Assess the injected amendment distribution and causes of the observed surfacing and well fouling within the PRB.
 - Primary porosity
 - Hydraulic conductivity
 - Borehole condition

HRSC Guidance Tool Selections

Component of the CSM: Chemical Distribution

Step 1: Identify Site Characteris	stics (sel	ect one item per group)	
Component of the CSM*	ķ	Formation Type*	
Aquifer Properties		Unconsolidated	Х
Chemical Distribution	Х	Bedrock	
Chemical Attenuation			

Step 2: Identify Type of Parameter/Data Required (multiple selections permitted)

Chemicals	
LNAPL	
DNAPL	
Groundwater COC Concentration	Х
Geochemical Tracking	Х
Soil COC Concentration	
COC Flux	Х

 Develop more accurate and appropriate volatile organic compound (VOC) mass flux estimates.

COC flux

- Assess the treatment zone extent.
 - Geochemical tracking
 - Groundwater COC concentration
- Characterize TCE degradation and conduct a mass balance with degradation by-products.
 - Groundwater COC concentration
- Assess the TCE hotspot upgradient of the PRB and TCE bypassing northwest of the PRB.
 - Groundwater COC concentration
- Assess the injected amendment distribution and causes of the observed surfacing and well fouling within the PRB.
 - Geochemical tracking

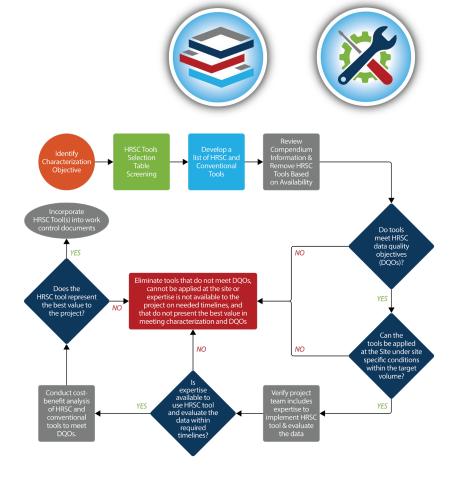
HRSC Guidance Tool Selections

Component of the CSM: Chemical Attenuation

Step 1: Identify Site Characteristics (select one item per group)

Component of the CSM*	\$	Formation Type*		
Aquifer Properties		Unconsolidated	Х	
Chemical Distribution		Bedrock		
Chemical Attenuation	Х			

Step 2: Identify Type of Parameter/Data Required (multiple selections permitted)


Chemical Attenuation					
Biotic Degradation	Х				
Abiotic Degradation					
Sorption					
Diffusion					

- Develop more accurate and appropriate volatile organic compound (VOC) mass flux estimates.
 - Biotic degradation
- Assess the treatment zone extent.
 - Biotic degradation
- Characterize TCE degradation and conduct a mass balance with degradation by-products.
 - Biotic degradation

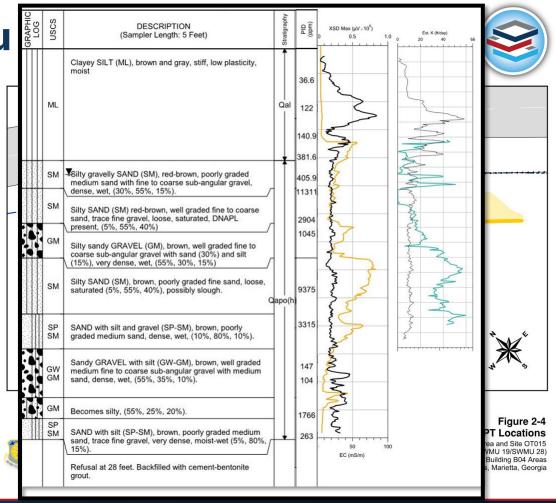
Output Evaluation

- Tools were eliminated based on availability or site-specific characteristics
- Remaining tools selected for technical and cost-benefit analysis
- Tools with multiple data quality objective capabilities were prioritized
- Add-on tools included if complementary to the primary tool (i.e., downhole geophysical suites)

HRSC Tool Elimination

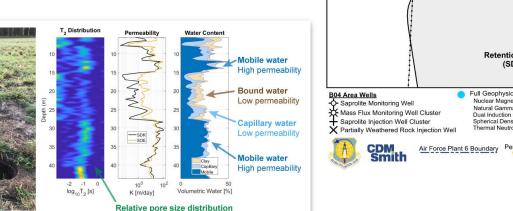
		Data Quality Objective						
HRSC Tool Category	HRSC Tool Selections	Improve VOC mass flux estimates	Assess Treatment Zone	Characterize TCE degradation	Assess TCE bypassing the PRB	Assess PRB Condition		
	Ground Penetrating Radar (GPR)				Х	Х		
Surface Geophysics	Very Low Frequency				Х	Х		
	Electrical Resistivity Tomography (ERT)				Х	Х		
	Magnetometric Resistivity (MMR)				Х	Х		
	Optical Televiewer					Х		
Downhole	Resistivity					Х		
Geophysics:	Gamma-gamma (density)				Х	Х		
Hydrogeologic	Neutron (porosity)				Х	Х		
Properties	Nuclear Magnetic Resonance (NMR)	Х			Х	Х		
	Acoustic Televiewer					Х		
	Cross-well Ground Penetrating Radar (GPR)				X			
	Hydraulic Profiling Tool (HPT)	Х			Х	Х		
	High-Resolution Piezocone (HRP) with GeoVis	Х			bypassing the PRB X X X X X X X X X X X X X X X X X X	X		
In Situ Logging	Waterloo Advanced Profiling System	Х	Х	Х	Х	X		
	Electrical Conductivity (EC)				Х	Х		
	Cone Penetrometer Testing (CPT)	Х			Х	X		
Downhole	Colloidal Borescope	Х						
Geophysics:	Heat-Pulse Flowmeter	Х						
Hydraulic Properties	Hydrophysical Logging	Х						
Subsurface COC	Membrane Interface Probe (MIP)	Х	Х		Х			
Profiling	Site Characterization and Analysis Penetrometer System	Х	Х	Х	X			
Profiling	Passive Flux meters	Х	Х	Х				
	Quantitative Polymerase Chain Reaction (qPCR)			Х				
	Meta-omics			Х				
	Hybridization			Х				
Attenuation	Proteomics and Metabolomics			Х				
	Enzyme Activity Probes			Х				
	Compound Specific Isotope Analysis (CSIA)			Х				
	Stable Isotope Probe (SIP)			Х				
	Groundwater Sampling	Х	Х	Х	Х	Х		
Conventional Tools	Well Video Logging					Х		
	Slug Testing	Х						

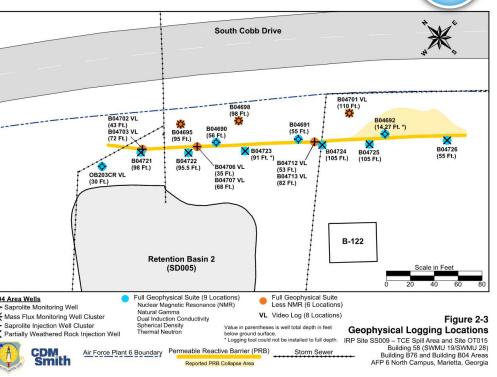
Output Evaluation and Cost Comparison


Technology		Cost
Electrical Resistivity Tomography (ERT)	\$	45,690
Magnetometric Resistivity (MMR)	. \$	35,000
Geophysics: NMR, Neutron, Gamma, Density, Induction Well Logging	\$	50,549
MiHPT Borehole Logging (HPT, EC, MIP)	\$	47,171
Utility Locate for MiHPT	\$	1,500
Molecular-QuantArray-Chlor analysis (qPCR)	\$	8,250 ¹
Compound Specific Isotope Analysis- Carbon (PCE, TCE, cis-DCE, VC, ethene, ethane)	\$	6,750 ¹
Additional Groundwater Sample Analytes (VOCs, anions, nitrate/nitrite,	\$	2,500 ¹
dissolved gases, TOC, and ferrous iron)		
Passive Flux Meters	\$	34,524

Total \$151,244

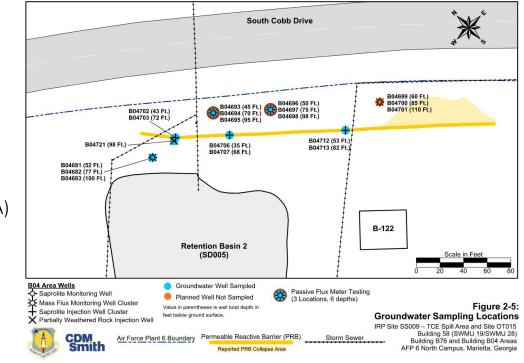
Direct Push In Situ


- Membrane Interface Probe (MIP)
 COC Concentration
 - XSD detector for TCF
 - PID detector for volatiles
 - FID detector for petroleum hydrocarbons
- Electrical Conductivity (EC) lithology
- Hydraulic Profiling Tool (HPT) hydraulic conductivity estimate



Downhole Geophysics

- Nuclear Magnetic Resonance (NMR)
 - Provides water content (in vadose zone) and porosity and hydraulic conductivity (in saturated zone)
 - Requires site-specific measurements for calibration
- Density, Neutron, Resistivity Logging
 - Provides lithology (approximate grain size and porosity)

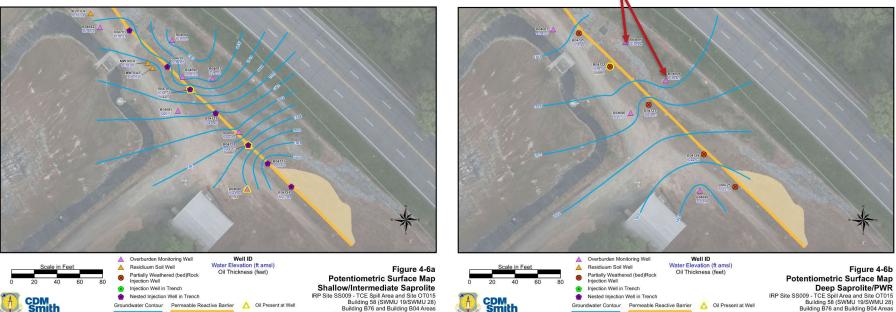


Sampling for Attenuation Parameters and Passive Fluxmeter

- Passive Fluxmeter
 - Provides hydraulic conductivity, COC groundwater concentration, groundwater flux, and COC flux
- Quantitative polymerase chain reaction (qPCR) by QuantArray[®]-Chlor
 - Quantifies specific microorganisms and functional genes to evaluate anaerobic dechlorination and aerobic cometabolism
 - Samples collected during conventional groundwater sampling
- Compound Specific Isotopic Analysis (CSIA)
 - TCE degradation

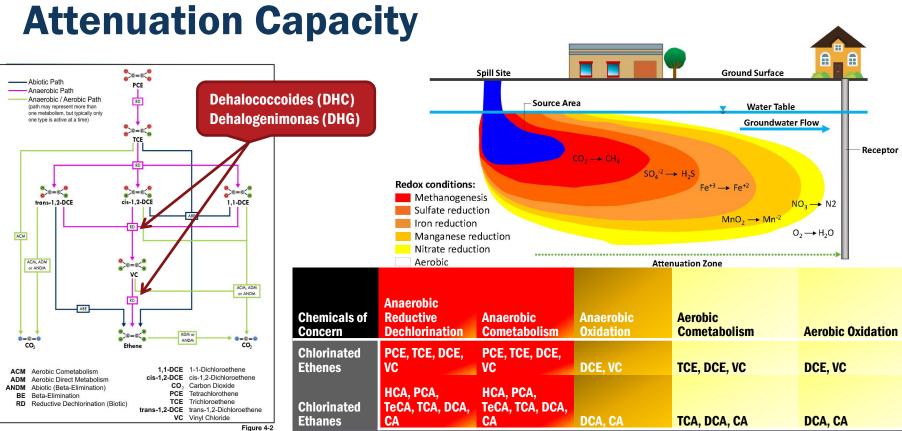
Conventional Tools

- Synoptic water elevations: detailed potentiometric surface mapping
- Groundwater sampling
 - VOC profiling
 - Geochemical conditions
- Slug testing: estimate hydraulic conductivity
- Video logging of wells


Building a HR-CSM from the Tool Selection Process

Potentiometric Surface

Reported PRB Collapse Area


Significant upward vertical gradient (0.11-0.12) between deep saprolite/PWR and intermediate saprolite

AFP 6 North Campus, Marietta, Georgia

Building 58 (SWMU 19/SWMU 28) Building B76 and Building B04 Areas AFP 6 North Campus, Marietta, Georgia

e Chemicals man site order Nul resonance of the second sec

Conceptual Model for Aerobic and Anaerobic Degradation Pathways for Chlorinated Ethene Chemicals Building 56 (SWMM 15 SWM 23) Building 56 (SWMM 15 SWM 23) For B North Campus, Maring A, Gendia AFP B North Campus, Maring A, Gendia

CDM Smith

Geochemistry and Microbial Results

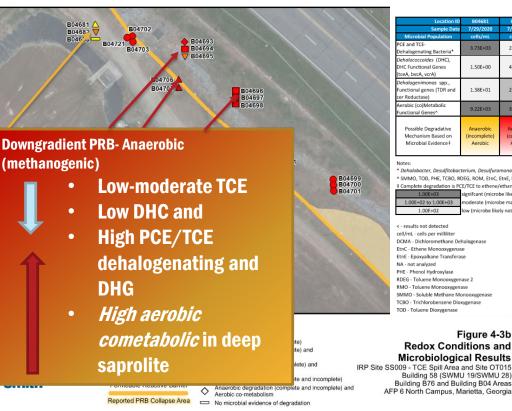
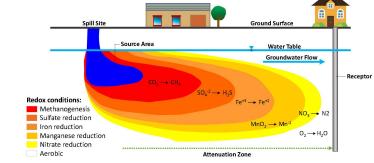
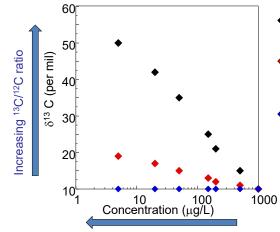



Table 4-5 Summary of Microbial Results


Location ID	B04681	004600	004500	B04694	DALCAE	DOLCOC	004603	004600	004300	004707	804691
Location ID Sample Date	B04681 7/29/2020	B04682 7/29/2020	B04693 7/30/2020	B04694 7/30/2020	B04695 7/30/2020	B04696 7/29/2020	B04697 7/29/2020	B04698 7/29/2020	B04706 7/30/2020	B04707 7/30/2020	B04691 5/20/2020
Microbial Population	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL	cells/mL
CE and TCE- ehalogenating Bacteria*	3.73E+03	2.33E+01	2.60E+03	3.03E+02	8.98E+01	1.08E+03	5.65E+02	4.19E+03	1.00E+02	4.09E+03	NA
ehalococcoides (DHC), HC Functional Genes ceA, bvcA, vcrA)	1.50E+00	4.17E+01	5.78E+01	4.73E+02	4.84E+01	1.11E+01	4.38E+02	6.22E+02	7.00E+00	3.55E+01	1.87E+02
ehalogenimonas spp., unctional genes (TDR and er Reductase)	1.38E+01	2.89E+02	1.43E+02	2.85E+04	2.07E+03	1.67E+02	8.54E+03	3.70E+04	5.01E+01	4.83E+01	NA
erobic (co)Metabolic unctional Genes^	9.22E+03	3.87E+03	7.41E+04	4.90E+01	2.35E+03	5.21E+02	1.57E+02	1.09E+03	1.55E+02	4.66E+02	NA
Possible Degradative Mechanism Based on Microbial Evidence‡	Anaerobic (incomplete) Aerobic	Anaerobic (complete) Aerobic	Anaerobic (complete) Anaerobic (incomplete) Aerobic	Anaerobic (complete) Anaerobic (incomplete)	Anaerobic (complete) Aerobic	Anaerobic (complete) Anaerobic (incomplete) Aerobic	Anaerobic (complete) Anaerobic (incomplete) Aerobic	Anaerobic (complete) Anaerobic (incomplete) Aerobic	Anaerobic (incomplete) Aerobic	Anaerobic (incomplete) Aerobic	Anaerobic (complete)
Aerobic Aerobic Aerobic Aerobic Aerobic Aerobic Aerobic Aerobic Aerobic Aerobic Aerobic Aerobic Aerobic Aerobic Aerobi											

0

CSIA Results

- Stable isotopes of carbon (C¹³/C¹²) analyzed Use Rayleigh model : δ¹³C = In(C/C₀)*ε + δ¹³C₀
- Biodegradation occurring at the Site

- Scenario 1 degradation processes
- Scenario 2 degradation processes
- Scenario 3
 No fractionation for dilution or adsorption

← Example of isotopic enrichment during contaminant degradation

TORNER

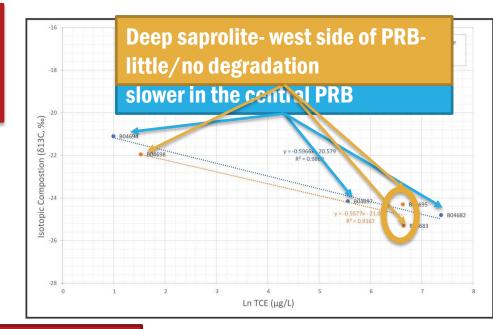


Figure 4-5 Trichloroethene Carbon Isotope Rayleigh Correlation Plot

> IRP Site SS009 - TCE Spill Area and Site OT015 Building 58 (SWMU 19/SWMU 28)

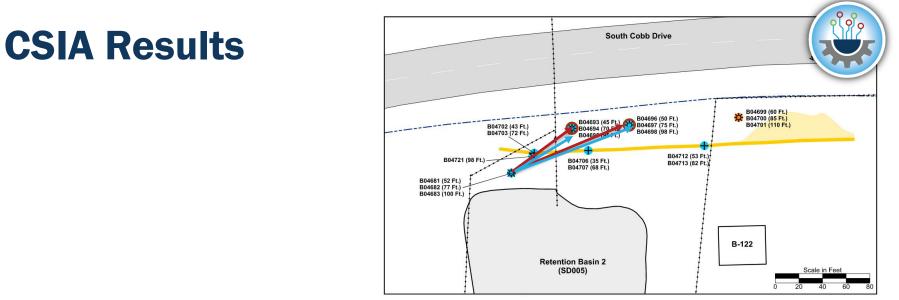
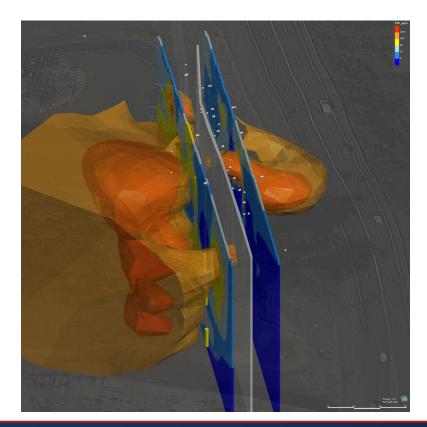


Table 4-7

Summary of Compound Specific Isotope Analysis Degradation Processes and Rates

Location 1 Along Flow Path	Location 2 Along Flow Path	Aquifer	Distance in Flow Path (feet)	Gradient (feet/feet)	Hydraulic Conductivity (feet/day)	Seepage Velocity (feet/day)	Travel Time (days)	Minimum Half Life (days)	Maximum Half Life (days)
B04682	B04694	Intermediate Saprolite	19	0.0935	1.6	0.748	25	12	85
B04683	B04695	Deep Saprolite/PWR	19	0.0258	2	0.258	74	124	906
B04682	B04697	Intermediate Saprolite	19	0.0935	1.6	0.748	25	66	481
B04683	B04698	Deep Saprolite/PWR	19	0.0258	2	0.258	74	37	271

Figure 2-5: Groundwater Sampling Locations


IRP Site SS009 – TCE Spill Area and Site OT015 Building 58 (SWMU 19/SWMU 28) Building B76 and Building B04 Areas AFP 6 North Campus, Marietta, Georgia

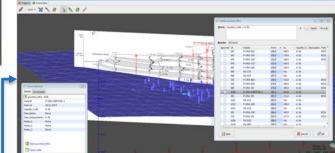
Notes:

36

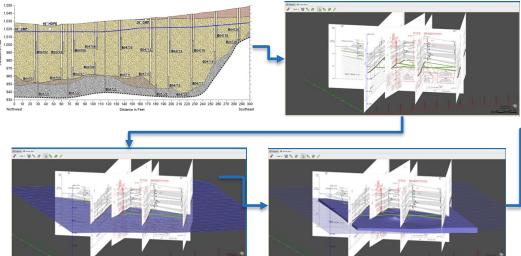
Integrating Data Sets: 3D Visualization

A variety of 3D visualization tools are available:

- Seequent's Leapfrog Works
- C Tech's EVS-Studio
- Rockworks
- ESRI ArcScene/3-D Analyst
- EarthVision
- GMS

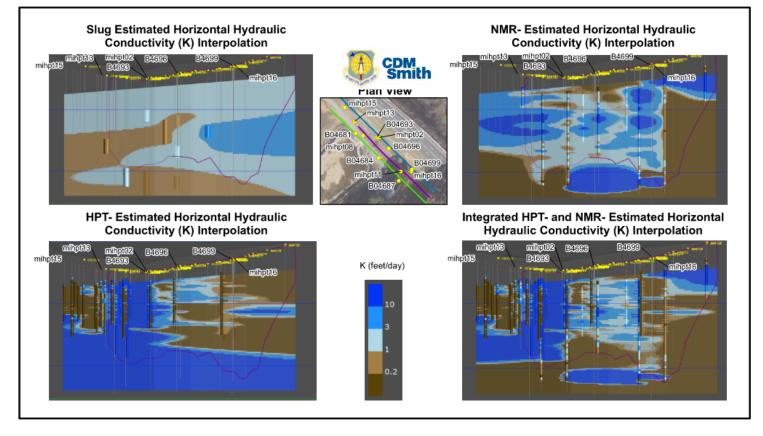

38

3D VA CSM: Geology

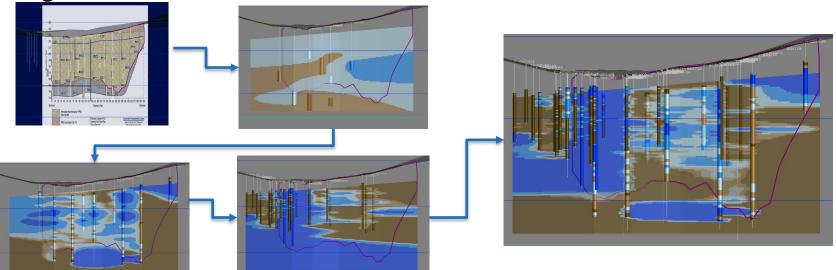

Original CSM

Distance in Fe

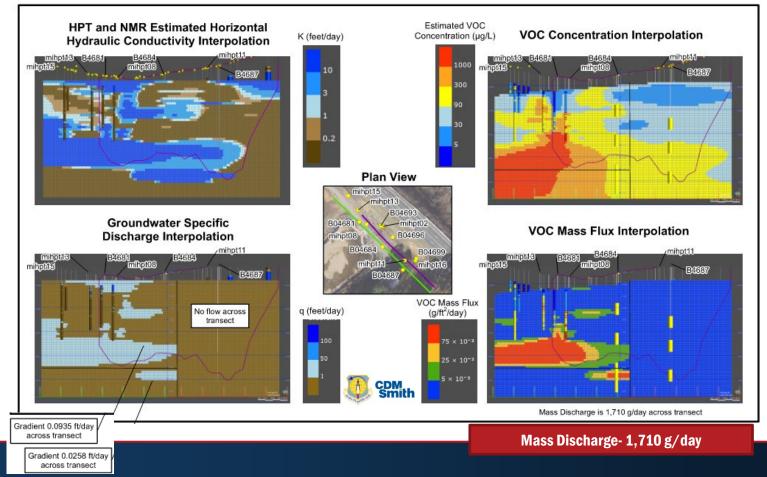
Incorporate borehole stratigraphic observations and revise contacts based on nearby observations



Quickly incorporate existing data into 3DVA CSM

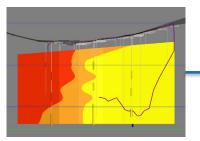


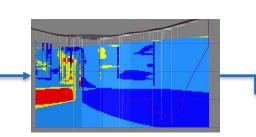
HR-CSM: Hydraulic Conductivity

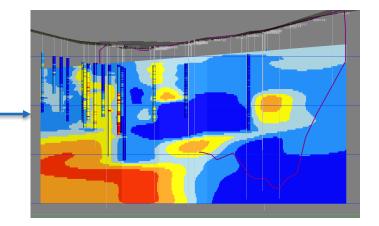

Integrating Data Sets: 3DVA – Hydrogeology

High Res CSM: Slug Test + NMR + HPT = Final HRCSM

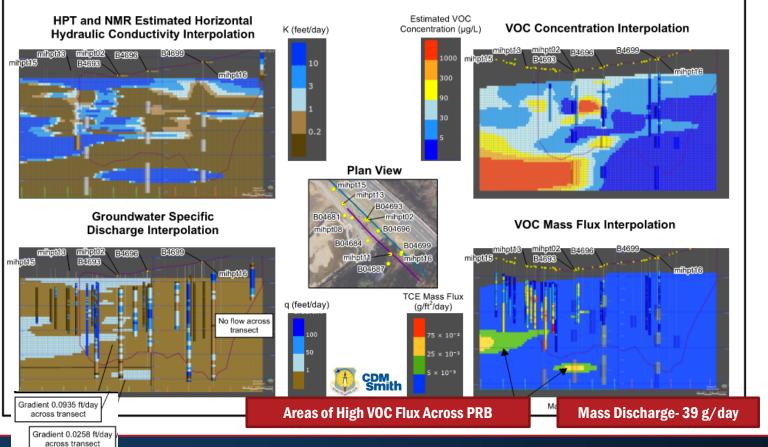
Original CSM


HR-CSM: Upgradient Mass Flux & Discharge

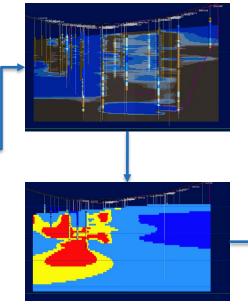



Integrating Data Sets: 3DVA – Contaminants

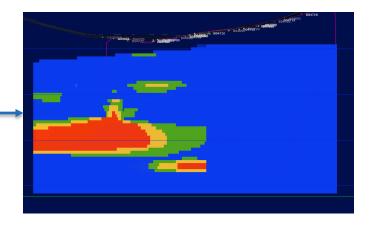
Original CSM - Wells



High Res CSM: Wells + MIP = Final HRCSM



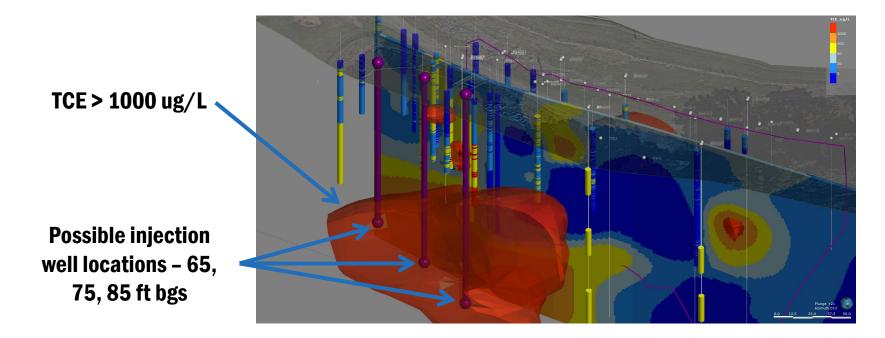
HR-CSM: Downgradient Mass Flux & Discharge



Integrating Data Sets: 3DVA – Mass Flux/Discharge

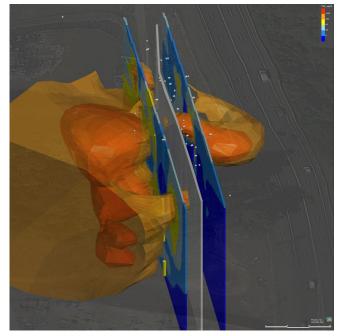
High Res CSM: Estimated permeability + Contaminant Distribution =

Mass Flux/Discharge



Original CSM

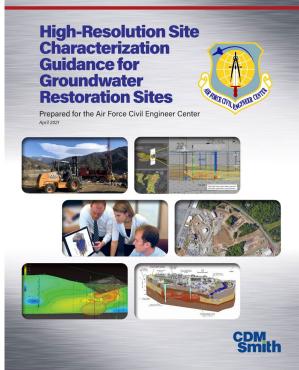
NO. NO. 100 110 127 100 142 150 160 170 180 180 201 201 220 220 340 220 201 270 280 380 280 38


meable Paractive Earlier (P

Using HR-CSM and 3D Model – Remedial Alternatives

HRSC diagnosed causes of surfacing and well fouling within the PRB.

- Excessive oil observed at the downgradient wells -PRB collapse and preferential pathways.
- Well-fouling was significant
- HPT and downhole density, natural gamma, and neutron logs for wells within the PRB were reviewed to evaluate lower hydraulic conductivity and/or porosity areas.
- There were no evident areas of reduced hydraulic conductivity or porosity within the PRB, suggesting that fouling limited the well sand pack.



Conclusions

 HRSC Guidance Process identified a broader suite of tools to consider, and a more comprehensive characterization program was developed.

HRSC

- Improved VOC extent and mass flux estimates
- Diagnosed TCE bypassing northwest and beneath the PRB
- Verified biotic TCE degradation was slower along flow paths not impacted by the PRB
- Diagnosed inefficiencies in the PRB injection system.

Guidance Document and Tools Selection Table Release: May 2023

Questions?

Tamzen Macbeth macbethtw@cdmsmith.com

AFCEC Contacts Jeffrey Davis, Ph.D. <u>jeffrey.davis.90@us.af.m</u> <u>il</u> Kent Glover, Ph.D. <u>kent.glover@us.af.mil</u>