

4D Electrical Resistivity Tomography Monitoring of Vadose Zone Soil Flushing at the Hanford 100-K East Reactor Facility: A Machine Learning Based Assessment

April 23, 2024

Presented by Tim Johnson, PNNL

PNNL is operated by Battelle for the U.S. Department of Energy

PNNL-SA-198319

Pacific Northwest

Basic Theory: What is Electrical Resistivity Tomography (ERT)

Medical Imaging Analog: Electrical Impedance Tomography

Data Collection

Courtesy Sarah Hamilton **Electrodes**

(Inversion)

Tomographic Image

(http://www.marquette.edu/mscs/facstaff-hamilton.shtml Hamilton et al., 2012.

Basic Theory: What is Electrical Resistivity Tomography (ERT)

Subsurface Imaging: Electrical Resistivity Tomography

Data Collection

Data Processing Depth (m) 8 12 (Inversion) -10 0

Tomographic Image

3

ERT Data Collection Hardware

- Autonomous operation (facilitates monitoring)
- Multi-channel many potential pairs per current injection (enables rapid data collection)
- Remote accessibility (facilitates autonomous imaging)
- No metal casing
- In-borehole electrodes can be used in screened zone

320 Electrode Data Collection System

Bulk Electrical Conductivity: Why It's Useful

- ERT images the electrical conductivity distribution of the subsurface
- Electrical conductivity is governed by several properties important to remediation performance

conductivity

Hanford Site

- Produced plutonium for U.S. weapons production
- 9 production reactors
- 5 plutonium extraction facilities
- 212 million liters radioactive waste stored in tanks
- 1.7 trillion liters lower-level liquid waste discharged to ~100 m thick vadose zone
- Cleanup operations since late 1980's

Columbia River

Hanford **300 Area**

Richland WA

100 K Chromium Source Term Remediation

- Plan A: Excavate
 - Incomplete source removal
- Plan B: Soil Flushing
 - Backfill excavation pit
 - Apply clean water at surface to flush chromium to water table
 - Pump and treat

569400 569500 Easting (m)

flushing zone boundary

Surface ERT **Monitoring Array**

ERT Monitoring Array

- 8 lines (124 m / 407 ft long)
- 5.4 m between lines
- 4 m between electrodes
- 256 electrodes
- 3D acquisition
- Surveys every 2 hrs. for 3 months

Easting (m)

Flushing Operations

- Flush water application alternated weekly between zones 1 and 2
- Continuous application
- Started at 340 liters/min (90 gal/min)
- Increased to 454 liters/min (120 gal/min) over time

569.46 Easting (m x10³)

100 K Geology

backfill/pit interface

Soil Flushing in Action ...

Real-Time 4D ERT Imaging Summary: April 2023

- 10 baseline (pre-flushing) data sets collected to assess data quality and set filter parameters
- 12 surveys/day
 - Autonomously transferred to offsite computing resources, processed, inverted, archived
- Posted to secure interactive website accessible to operators and stakeholders

12

Real-time Visualization Web Interface

ERT Imaging Based Assessment Flush Water Delivery

- Larger flush water flow evident in 2023 compared to 2022
- Flush water migration impacted by interface between pit bottom and Hanford formation, geologic heterogeneity

Deep Neural Network (DNN) Based Assessment

DNN Training Phase

DNN Predicted Soil Flushing Behavior

Pilot Point DNN Joint Inversion

- Hydrogeologic properties are 'randomly' chosen at pilot points
- Properties are kriged to computational mesh
- Parallel simulations produce ERT training data
- DNN is trained to interpret/invert field ERT to estimate pilot point properties

Training Data Generation

- 500 simulations
- 1 hr./simulation on 64 CPU's
- 32,000 CPU-hours

DNN Training DNN Training ~10 minutes on multi-core

- Data compression ~30 minutes, 1 CPU
- GPU

DNN Performance Test: Example 1

80 40 60 Easting (m) 20 0

Pilot-point DNN Prediction

DNN Performance Test: Example 2

Pilot-point DNN Prediction

100 KE DNN Soil Property Prediction

- Consistent with laboratory derived published values
- Consistent with observed soil flushing behavior
- Enables enhanced analysis of soil flushing performance through simulation (to-do)

Summary

- Rich hydrogeologic information in time-lapse ERT data
- Information extraction enabled by:
 - Multiphysics HPC
 - Machine learning
- ML enabled 'joint inversion' to significantly improve subsurface process monitoring and understanding

Simulated Change in Saturation Based on DNN-Estimated Soil Properties

Thank you

