Autopsy of a Small UST Site in Bedrock: Implications for Remedial Effectiveness Case Study, Devens, MA

William C. Brandon, Hydrogeologist, US EPA Region 1

Federal Remediation Technology Roundtable Meeting Characterization and Remediation of Sites with Fractured Bedrock Washington, DC November 9, 2010

Acknowledgements

- Gannet Fleming Inc.
- Army BRAC Office
- HGL Inc.
- EPA Region 1 Federal Facilities
- EPA Region 1 OEME
- Mass Development

Geologic Setting

PRELIMINARY BEDROCK GEOLOGIC MAP AYER QUADRANGLE, MASSACHUSETTS M.O.S.G. OPEN FILE REPORT 06-03 SHEET 1 OF 4

Site Location

Geologic History

- Silurian metasediments
- Intrusion of Ayer Granodiorite (Devonian)
- Intrusion of Chelmsford Granite (later Devonian)
- Deformation, faulting, metamorphism
- Quaternary glaciation and de-glaciation
 - Unloading, development of sheeting fractures
 - Deposition of outwash sand, gravel

DRMO Site Plan

POL Site Plan

DRMO Site History

- Defense Reutilization and Marketing Office (DRMO)
 - Equipment Recycling ~ 1964-1995
 - 5000 gal Waste Oil UST
 - UST removed 1992
 - Limited soil removal (tank grave partially in BR)
 - COCs: TCE, DCB, VPH, As, Mn
- 1998-1999; LTMP (V_1.0) Initiated

DRMO LTM Network Pre-2000

COC Trends (Pre-2000)

32M-92-06X

Site History (Part II)

- Warehouse Construction Results in large-scale site alterations (2000-2001)
 - Bedrock Blasting/Cut-and-fill
 - Engineered Drainage (Storm sewers, Detention Basin)
 - Extensive area of impervious surface (Building, Parking lots)
- Site Hydrology Profoundly Altered
- 2001-2002; LTMP Revised (v.2),
 - Numerous new monitoring wells installed.
 - New baseline
 - Ongoing LTM and data evaluation (2002-2006)

Site: Pre-construction (March 2000)

Pre-Blast Bedrock Exposures at SE Corner of Building Area

Fill Emplacement SW of Building Footprint

Storm Drain Installation

Subsurface Utilities

LTM/CSM Issues (2002-2006)

- "Moving Target" Site Hydrology Slowly Evolving Post-Construction
- Few COCs identified at POL after 2002, but
- "Down-gradient" directions uncertain
- Persistent Contamination in UST-13 Area
- Bedrock Affected, but Fracture Network not evaluated
- Adequacy of LTM network called into question

Near-Term Objectives

- Detailed evaluation of bedrock structural data from outcrop mapping
- Update CSM (Consensus)
 - Bedrock Surface Map
 - Bedrock Fracture Data
 - Ground Water Flow Gradients
 - Lateral/vertical
 - Source Areas/Downgradient of Source Areas
 - Long-term water level trends
 - Configuration of Subsurface Hydrostratigraphic Units (2D/3D)
 - Detailed cross sections through each source area normal and parallel to hydraulic gradient
- Identify Data Gaps
- Recommend Adjustments to GW Monitoring Network

Longer-term Objectives

- Install New Monitoring Wells
- Decommission Unnecessary Wells
- New Baseline; Re-initiate Long-term Monitoring
- Evaluate time-series contaminant trends
- Determine whether additional remedial measures are needed
- Site Closeout

Site Plan with Existing Monitoring Well Locations

Elements of Bedrock Evaluation

- Configuration of top-of-bedrock surface
- Geologic Mapping
- Rock Type Identification
- Foliation orientation Data
- Joint Orientation Data
- Structural Analysis
 - Stereo-net analysis
 - Joint/Fracture Mapping

Bedrock Elevation (Pre-Blast)

Elevation of Bedrock Surface (Post-Blast)

Source: MACTEC, 2006

Major Rock Types

- Berwick Formation (S-O)
 - Thick-bedded to massive
 Metaconglomerates, cg conglomeratic
 quartzite, fg feldspathic biotitic quartzite
 - Thinly bedded to massive dark gray to brown calcareous and phyllitic siltstones and mg feldspar-qz-biotite schist
- Ayer Granite
 - Devens Long-Pond Facies
 - Massive gneissic equigranular to porphyroblastic biotite granite and granodiorite

Bedrock Geologic Map of the Shepley's Hill Landfill Area

Source Harding ESE, 2003

Blasting Presents Fresh Exposures

Overview of Locations Where Structural Data Was Collected

Foliation

Stereoplot of Foliation Orientations

N=49 Strike ~ N3 Dip ~ 52 W

Statistical Summary	
Projection:	Schmidt (Equal Area)
Number of Sample Points:	49
Mean Lineation Azimuth:	92.2
Mean Lineation Plunge:	38.2
Great Circle Azimuth:	20.8
Great Circle Plunge:	39.7
1st Elgenvalue:	0.926
2nd Eigenvalue:	0.057
3rd Eigenvalue:	0.017
LN (E1 / E2):	2.794
LN (E2 / E3):	1.181
(LN(E1/E2)] / (LN(E2/E3)):	2.366
Spherical Variance:	0.0404
Rbar:	0.9596

Plan View of Foliation Data NE Corner of Building

Plan View of Foliation Data SE Corner of Building

Stereoplot of Foliation indicating Fold Axis

Joints

 Generic Term for Planar discontinuity in Rock Mass (e.g., crack)

Open joints may transmit water (oxidation)

Greater Variability than Foliation

Intersecting Joint Sets

Stereo-plot of Joint Orientations

N=156 66 stations

Major and Minor Joint Sets

- N3E +/-, 50-60 W (parallel to foliation)
- N45E +/-, 65-85 SE
- Near-surface sheeting joints at various orientations, Sub-parallel to former topography
- ~ N70W, Subvertical (weak)
- $\sim N30W$, > 70-80 SE or SW Dips (weak)

Interpretive Overburden Groundwater Surface Map, October 7, 2004

Interpretive Bedrock Groundwater Surface Map, October 7, 2004

N-S Hydrogeologic Cross Section – UST 13

W-E Hydrogeologic Cross-Section UST 13 Area

True-Scale Cross Section of UST-13 Area Normal to Foliation, Illustrating Monitoring Gap

Plan View of Site 32-43A Indicating Proposed Locations for New Monitoring Wells

Summary and Conclusions

- Basic Geologic Analysis points to numerous opportunities for LTM Improvements
- Many existing MWs are no longer useful and should be eliminated from the program
- UST-13 Area Requires several new MWs
 - Source area
 - True down-gradient directions
 - Water-table (BR/OB)
- Joints parallel to foliation may play a significant role in contaminant migration
 - Down-dip migration of NAPL (W/SW)
 - Dissolved COC migration along strike (S)

Summary and Conclusions (Cont.)

- Systematic water table rise in the POL area
- Many existing MWs no longer screened optimally for water table monitoring
- Source area MWs needed
- Several MWs needed to SW of source area along primary flow pathways (SOB/DOB)
- Target SW-striking Bedrock Structure

Recommendations and Outstanding Issues

- CSM Consensus
- Install New Monitoring Wells
- Decommission Unnecessary Wells
- New Baseline; Re-initiate Long-term Monitoring
- Evaluate time-series contaminant trends
- Evaluate Perchlorate (Blasting)
- Install Transducers to evaluate long-term water level trends
- Determine whether additional remedial measures are needed

- Focus on "hotspot" near 32M-01-18XBR
- 3 shallow bedrock injection wells installed around 32M-01-18XBR
- Overburden injection well installed on Topof-bedrock in former tank grave
- 1800 gallons of water/sodium persulfate solution injected February 2009
- sodium hydroxide used as catalyst

Injection Pressure Response

Injection Pressure Response **Near Field** AOCs 32 and 43A 32M-01-14XBR Persulfate Injection Monitoring: Transducer Data AOCs 32 and 43A 32M01-14XBR U.S. Army Corps of Engineers New England District Legend Monitoring Well Injection Well Overburden/Bedrock Injection Well 32MH01-15XBR Former Building Former Underground Storage Tank Location Persulfate Injection Monitoring: Transducer Data Persulfate Injection Monitoring: Transducer Data AOCs 32 and 43A 32M-01-18XBR Transducer Malfunction Stop Injections E-OMMOTE Desembosolidada Map Source: HGL GIS, MASS.GOV, ESRI, USACE V HGL

Injection Conductivity Response Near Field

Long-Term Trends 1,2-Dichlorobenzene Areas of Contamination 32 and 43A Well 32M-01-18XBR

Long-Term Trends 1,3-Dichlorobenzene Areas of Contamination 32 and 43A Well 32M-01-18XBR

Long-Term Trends C₉-C₁₀ Aromatics Area of Contamination 32 and 43A Well 32M-01-18XBR

Vertical LNAPL Distribution

 Uniform LNAPL saturation

- LNAPL penetrates below water table
- LNAPL and water coexist in pores

Water Levels - 32M-01-18XBR

True-Scale Cross Section of UST-13 Area Normal to Foliation, Illustrating Monitoring Gap

Questions for Ongoing LTM

- Is the apparent COC attenuation real?
- Or will the Oscillatory longer-term trends resume
- Does the site behave as a typical "drowned smear zone"?
- Delivery: Will future remedial efforts need to more carefully consider the bedrock fracture system?
- <u>Deliverance</u>: How might one increase the oxidant contact with residual contaminants?

Next Steps

- Install Transducers to evaluate long-term water level trends
- Determine whether additional remedial measures are needed
- Consider Injecting in down-dip directions
- Monitor in down gradient areas in consideration of bedrock ground water gradients and bedrock fabric

