PBMO: The Comprehensive Physics-Based Flow, Transport, and Management Optimization Tool Kit

Presented at the Federal Remediation Technologies Roundtable, November, 2011 Washington, DC

Larry M. Deschaine, P.E.
Theodore Lillys, P.E.
Why Optimize with PBMO?

Available Optimization Tools:

- Require multiple stops and starts
- Unable to solve complex problems in reasonable time frames
- Have embedded Flow and Transport (F&T) simulators with limited capabilities

PBMO Salient Features:

- Full automation
- Robust and efficient optimization algorithms
- Flexibility to utilize a variety of physics-based models to capture real-world conditions
Environmental Restoration Optimization

Approach:
- Integrates optimization algorithms and physics-based models
- Leverages all key decision information:
 - Management goals/constraints, stakeholder input, and regulatory requirements
- Realistically captures important site physics
- Uses state-of-the-art, robust optimization methods
- Achieves coherent interpretation of disparate site data
- Produces credible, structured solutions
Environmental Restoration Optimization

Benefits:

- Increased stakeholder confidence
 - Transparent solutions
 - Solutions honor site physics
 - Satisfies management/stakeholder constraints

- Increased management capability and control for site managers
 - Estimates the time and costs
 - Predicts if complete remediation is achievable
 - Quantifies expected system performance
 - Supports informed decisions:
 - Quantifies uncertainty
 - Balances fiscal resources and stakeholder needs
 - Accelerates site closure

- Achieves cost savings and minimizes long-term liabilities
The PBMO™ Medallion Conceptualization

General Process Description:
- Define scope of work and deliverable(s)
- Set up project objectives and constraints
- Select suitable model to predict future scenarios
- Solve and interpret results
- Achieve stakeholder acceptance
PBMO Application at: Umatilla Army Depot, OR

Work Objectives:
- Demonstrate newly developed PBMO Optimal Design of Remedial Systems module
 - Determine optimal Pump-and-Treat (P&T) strategy for Umatilla project
 - Well studied site with known credible estimate of global optimal solution
 - Demonstrate ability to find global optimal solution for active remediation faster than previously used optimization tools
 - Showcase PBMO automation and ability to run complete optimization problems from start to finish unattended

The “Umatilla” site was the subject of a well-conducted and documented ESTCP* multi-approach, multi-participant remedial design optimization study. HGL developed PBMO after this study concluded.

* DOD’s Environmental Security Technology Certification Program
Candidate Remediation Infrastructure Locations

Project Approach:

- Determine optimal flow rates / locations for pumping and injection
 - Infiltration trench locations: 7
 - Pumping areas (with movable wells): 3
- Use the same F&T models (MODFLOW/MT3DMS) and model files as in the original study
- Compare PBMO results with known solutions
- Use MGO optimal solution for Formulation 1 (minimizing the total remedy cost) as the search stopping criterion
Infrastructure Locations for Various Remedial Designs

MGO Optimal Solution

PBMO Optimal Solution

TNT

MGO-2

MGO-1

EW-3

EW-1

RDX

PBMO-1

PBMO-2

EW-3

EW-1
PBMO versus MGO: Year 1
PBMO versus MGO: Year 3
PBMO versus MGO: Cleanup Goals

PBMO and MGO optimal solutions attain cleanup goals with 4 extraction wells and 2 infiltration basins.

PBMO and MGO designs meet remedial goals in 4 years for RDX and TNT – a 13 year improvement over the existing RIP.

RDX

TNT
Remedial Optimization Comparison:

PBMO and MGO: Umatilla Army Depot

Optimal pumping strategy found using PBMO and MGO for Formulation 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Location (Layer, Row, Column)</th>
<th>Pumping/Injection Rate (GPM)</th>
<th>Total remedy cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RIP Design</td>
<td>Trial & Error Design (2)</td>
</tr>
<tr>
<td>EW-1</td>
<td>(1,60,65)</td>
<td>-128</td>
<td>-280</td>
</tr>
<tr>
<td>EW-2</td>
<td>(1,83,84)</td>
<td>-105</td>
<td>-360</td>
</tr>
<tr>
<td>EW-3</td>
<td>(1,53,59)</td>
<td>-887</td>
<td>-660</td>
</tr>
<tr>
<td>EW-4</td>
<td>(1,85,86)</td>
<td>-105</td>
<td>-360</td>
</tr>
<tr>
<td>New-1 (T&E)</td>
<td>(1,48,57)</td>
<td>-105</td>
<td>-360</td>
</tr>
<tr>
<td>New-2 (T&E)</td>
<td>(1,49,58)</td>
<td>-230</td>
<td>-360</td>
</tr>
<tr>
<td>New-3 (MGO)</td>
<td>(1,48,59)</td>
<td>-230</td>
<td></td>
</tr>
<tr>
<td>New-4 (MGO)</td>
<td>(1,48,55)</td>
<td>-283</td>
<td></td>
</tr>
<tr>
<td>New-5 (PBMO)</td>
<td>(1,48,57)</td>
<td></td>
<td>-292.5</td>
</tr>
<tr>
<td>New-6 (PBMO)</td>
<td>(1,52,61)</td>
<td></td>
<td>-292.5</td>
</tr>
<tr>
<td>IF-1</td>
<td>*</td>
<td>233</td>
<td>282</td>
</tr>
<tr>
<td>IF-2</td>
<td>*</td>
<td>405</td>
<td>405</td>
</tr>
<tr>
<td>IF-3</td>
<td>*</td>
<td>483</td>
<td>482</td>
</tr>
<tr>
<td>IF-4</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total remedy cost ($)</td>
<td>$3,836,285</td>
<td>$2,230,905</td>
<td>$1,664,395</td>
</tr>
</tbody>
</table>

(1) DOD; (2) GeoTrans; (3) Zheng (University of Alabama); (4) HGL

PBMO Results and Advantages:

- PBMO is robust and efficient: found a similar cost solution in ~100 simulations
- ESTCP MGO report stated that “Roughly, a total of 5000 flow and transport simulations were executed by the optimization code.” Numerous manual interventions, tunings, and restarts were required
- PBMO run is completely automated
PBMO: Robustness Testing
Candidate Wells Starting Positions

PBMO Results:
- Six trial runs were made with starting well positions at various corners of the search area.
- For these runs PBMO takes ~100 - 110 simulations to attain the optimal solution.
- PBMO is insensitive to the starting locations for new wells.
Performance Comparison of Global Optimization Algorithms in PBMO and MGO Software

PBMO Vs. MGO:

- PBMO is based on the Lipschitz Global Optimizer (LGO) algorithm
- MGO is implemented with Simulated Annealing (SA), Genetic Algorithms (GA), and Tabu Search (TS)

PBMO Application: Former Fort Ord NPL Site, CA

Site Background:
- Former military facility in California
 - Operable Unit-1 (OU-1) is a former fire drill area
- Aquifer Cleanup Levels (ACLs) defined in 1995 Record of Decision (ROD) for 10 Contaminants of Concern (COCs)
 - TCE is the only COC with concentration > ACL
 - TCE concentration has exceeded ACL since 1988
TCE Contamination in Groundwater: Former Fort Ord OU-1

Remedy-In-Place:

- HGL collaborated with CH2MILL to design the P&T system for remediating the TCE plume (~4,000 ft long inside Fort Ord property boundary)
- HGL has implemented the system and provided its Operation and Maintenance (O&M) services since 2005
- The remedy-in-place (RIP) has eliminated offsite migration of TCE and resulted in substantial reduction in the plume size
Impact of the P&T Remedy-In-Place on the TCE Plume: Former Fort Ord OU-1
PBMO Application: Former Fort Ord OU-1

Work Objectives:
- Develop Optimal P&T program and Optimized Exit Strategy

Project Approach:
- Determine optimal flow rates / locations for pumping and injection to find point in time to stop active extraction/reinjection and transition to Monitored Natural Attenuation (MNA) such that ACL is achieved in 10 years
- For this application, PBMO requires ~ 75 flow/transport simulations and 4.5 CPU hrs to attain the optimal solution
- HGL recently received favorable feedback on the optimal remedial solution from EPA and State Regulators

Observed TCE Plume in March 2011
PBMO Application:
Standard Chlorine of Delaware, DE

Site Background:
- 65-Acre EPA Region 3 Superfund site located near the Delaware River
- Chemical wastes including PCBs, dioxins and chlorinated benzenes in groundwater, surface water and sediment/soil

Remedy-In-Place:
- Well/slurry trench system hydraulic containment

PBMO Application:
- Performance evaluation; identifying potential enhancements
- This application involves only GW flow simulations
- PBMO requires < 30 CPU minutes to attain the optimal solution
Optimization Formulation & Results: Standard Chlorine of Delaware

PBMO Results:
- PBMO analysis identifies several areas of improvement for the existing remedy
- Rectifications were made leading to increased system throughput from less than 10,000 gpd to over 43,000 gpd in 8 months
- System has extracted and treated > 2 tons of contaminants since July 2009
Summary and Conclusions

Umatilla Army Depot, OR:

- RDX/TNT plume Remedial Design Optimization case study: PBMO benchmarked against public domain MGO flow/transport optimization software
 - PBMO attains the globally optimal solution \(~50\ times\ faster\ than\ MGO\)
- Each flow/transport simulation took 2 CPU minutes; PBMO finished in 3.5 CPU hrs
 - Had we been able to run MGO from start to finish, it would have taken 168 hrs (one week) of CPU time

Fort Ord NPL Site, CA:

- O&M of existing P&T system for TCE plume cleanup: PBMO application for Pumping Scheme Optimization – Provides Optimal Scheme, Optimized Exit Strategy as well as \(~$300K\) cost savings
- Identifies when to switch from P&T remediation to MNA

Standard Chlorine of Delaware Superfund Site, DE:

- Well/slurry trench system hydraulic containment remedy: PBMO application for Performance Evaluation and Potential Enhancements
 - Rectifications were made resulting in \(4.3\ fold\ increase\ in\ system\ throughput\ within\ 8\ months\)