Optimization Reviews
An Opportunity to Consider Exit Strategies

Stephen Dyment
USEPA OSRTI/TIFSD
11/09/2011
Superfund Optimization Results To Date
Based on an analysis of 52 of 100 optimized sites

- **Cost savings**
 - 83% cost savings opportunities
 - 52% cost savings opportunities > $1 million

- **Improved protectiveness**
 - 19% eliminate or confirm no ecological exposures
 - 33% eliminate or confirm no human exposures
 - 62% improve or confirm control of plume migration

Similarly positive findings for the other 48 optimized sites…

and >$350M in potential cost savings/avoidance for all 100 sites.

~45% of sites include recommendations for CSM or characterization improvement!
Perspective

- **Definition by perspective, statute, program**
 - EPA Superfund no formal definition
 - AFCEE example

- **exit strategy — n** 1. a method or plan for extricating oneself from an undesirable situation 2. a plan and timetable for withdrawal from a military engagement 3. the method by which an investor intends to cash out of an investment

 - Collins English Dictionary - Complete & Unabridged 10th Edition
How Might Exit Strategies Help in Superfund?

Figure 1: Recommended Process for Restoring Contaminated Groundwater at Superfund Sites
The Usual Suspects

RAOs
- Short term
- Long term

CSM
- Sources and release mechanisms
- Detailed site hydrogeological model
- Contaminant fate and transport
- Current and future receptors
- Uncertainties

Actions to be taken to achieve RAOs
- Individual components
- Operation, control, monitoring

Performance metrics and decision logic
- Engineered components
- Interim milestones for short-term RAOs
- Final completion through achievement of RAOs

Contingency plans/Alternative exit strategies
- Evaluating different approaches
- Justifying alternative strategy

Federal Remediation Technologies Roundtable
Elements Potentially Applicable to Exit Strategies

Project Type
- Multiple Sites
- Single Sites

Strategy Levels
- Organizational
- Programmatic
- Site-Specific / Stakeholder
- Technical / Media
- Administrative

Strategy Gap Assessment
- What specific elements are needed from each level?

Comprehensive Exit Strategy Plan
Exit Strategies Viewed Through The Superfund Optimization Lens

- No identified data sufficiency or statistical techniques to close sites very near attainment

- Historically focused on CSM elements
 - Source identification, strength, hydrogeologic context, data consistency with CSM
 - Plume delineation and stability, concentration trends, attenuation processes/strength/speed

- Make case for data sufficiency for conclusions to date and future needs for completion

- 3 Superfund optimization examples
Well 12A

- Oil recycling/solvent processing- VOC contamination
 - Original ROD 1983, RODA 1985, ROD modification 1987
 - Remedial actions- GETS, VES, filter cake excavation
 - RSE 2001
 - State operating the groundwater treatment plant since October 2005
 - 3D visualization and site-wide optimization 2009/2010

- 2009/2010 Findings
 - GETS not capturing TCE
 - High concentration soils- shallow filter cake, deeper zones likely feeding dissolved plume
 - Important hydrogeologic features- anaerobic/aerobic conditions, areas of significant potential matrix diffusion
Well 12A exit strategy

- Articulate desired end state in 2010 RODA
 - Adequate use of robust source removal, timely transition to polishing steps
 - Reduce/eliminate need for pump and treat
 - Appropriate reliance on MNA, mass flux metrics
 - Adaptive, flexible implementation

- Define actions (spatial), metrics (temporal)
 - Shallow excavation, focused thermal footprint
 - Enhanced anaerobic bio near source dissolved phase
 - Transition to MNA, monitoring/modeling to assess RAO of MCLs at municipal well
Well 12A
Palermo Wellfield

- TCE at municipal well identified 1993
- ROD 1999
 - Wellhead air stripper treatment system (PCE, TCE)
 - SVE at upgradient dry cleaner (operated 1998-2000)
 - French drain system- shallow GW, VI
- Subsequent monitoring and 5 year reviews
 - CSIA- minimal degradation, TCE source investigation
 - Plume delineation, capture, VI?
Palermo Wellfield- Optimization and Exit Strategy

- Wellhead treatment effective, continue active remedy
 - Plume capture question remains, recommended well locations and minimal data necessary
 - Select sampling frequency reductions

- Vapor Intrusion
 - Base VI RAOs on indoor air/soil gas rather the GW depth
 - Crawlspace survey plus 2 additional focused sampling events, VI assessment/SVE effectiveness at dry cleaners

- Shallow GW
 - Surface water expression, aeration pond

- Other
 - TCE upgradient source
 - Data management, extraction rate/volume reporting, City agreement
Applied Materials

- Site characterization 1983, NPL 1987, GW ROD 1990
- The groundwater extraction and treatment system
 - 1985 and 1999 in the A zone
 - 1990-2002 the A2 zone
 - Phased out due to low COC recovery (1996-2002)
- Intermittent low level exceedences
 - 1,1,1 TCA and TCE below cleanup levels across site
 - TCA Daughter products 1,1-DCE and 1,1-DCA exceed
- Hydrogeology, primary contaminant sources, plume morphology, attenuation trends all well understood
Applied Materials Exit Strategy

- Closure clarity
 - Attainment throughout aquifer = all COCs, all wells

- MAROS- reduced monitoring frequency
 - Specific wells and frequencies

- CSM and concentration trend analysis
 - Active remediation not necessary/limited value
 - Source largely depleted, limited secondary sourcing resulting in daughter product exceedences

- Policy, statistics, data standard questions remain
<table>
<thead>
<tr>
<th>WellName</th>
<th>Number of Samples</th>
<th>Number of Detects</th>
<th>Percent Detection</th>
<th>Mann-Kendall Trend</th>
<th>Statistically Below Standard?</th>
<th>Date of Final Sampling Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM1-1</td>
<td>13</td>
<td>11</td>
<td>85%</td>
<td>D</td>
<td>NO</td>
<td>1/9/2003</td>
</tr>
<tr>
<td>AM1-5B</td>
<td>14</td>
<td>5</td>
<td>36%</td>
<td>D</td>
<td>YES</td>
<td>1/8/2003</td>
</tr>
<tr>
<td>AM1-10</td>
<td>13</td>
<td>13</td>
<td>100%</td>
<td>D</td>
<td>NO</td>
<td>7/11/2003</td>
</tr>
<tr>
<td>AM1-11</td>
<td>23</td>
<td>22</td>
<td>96%</td>
<td>D</td>
<td>NO</td>
<td>1/18/2011</td>
</tr>
<tr>
<td>AM1-2</td>
<td>8</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>YES</td>
<td>1/8/2003</td>
</tr>
<tr>
<td>AM1-5E</td>
<td>35</td>
<td>34</td>
<td>97%</td>
<td>D</td>
<td>NO</td>
<td>1/18/2011</td>
</tr>
<tr>
<td>AM1-6</td>
<td>37</td>
<td>36</td>
<td>97%</td>
<td>S</td>
<td>YES</td>
<td>1/18/2011</td>
</tr>
<tr>
<td>AM1-7</td>
<td>36</td>
<td>36</td>
<td>100%</td>
<td>NT</td>
<td>NO</td>
<td>1/18/2011</td>
</tr>
<tr>
<td>AM1-9</td>
<td>7</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>YES</td>
<td>1/8/2003</td>
</tr>
<tr>
<td>AM1-EP</td>
<td>11</td>
<td>10</td>
<td>91%</td>
<td>NT</td>
<td>YES</td>
<td>1/8/2003</td>
</tr>
<tr>
<td>AV-1B</td>
<td>25</td>
<td>24</td>
<td>96%</td>
<td>D</td>
<td>NO</td>
<td>7/20/2006</td>
</tr>
<tr>
<td>AV-7A</td>
<td>10</td>
<td>4</td>
<td>40%</td>
<td>D</td>
<td>YES</td>
<td>7/20/2006</td>
</tr>
</tbody>
</table>

1,1-Dichloroethane

<table>
<thead>
<tr>
<th>WellName</th>
<th>Number of Samples</th>
<th>Number of Detects</th>
<th>Percent Detection</th>
<th>Mann-Kendall Trend</th>
<th>Statistically Below Standard?</th>
<th>Date of Final Sampling Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM1-1</td>
<td>13</td>
<td>11</td>
<td>85%</td>
<td>D</td>
<td>NO</td>
<td>1/9/2003</td>
</tr>
<tr>
<td>AM1-5B</td>
<td>14</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>YES</td>
<td>1/8/2003</td>
</tr>
<tr>
<td>AM1-10</td>
<td>13</td>
<td>11</td>
<td>85%</td>
<td>D</td>
<td>NO</td>
<td>7/11/2003</td>
</tr>
<tr>
<td>AM1-11</td>
<td>23</td>
<td>22</td>
<td>96%</td>
<td>D</td>
<td>NO</td>
<td>1/18/2011</td>
</tr>
<tr>
<td>AM1-2</td>
<td>8</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>YES</td>
<td>1/8/2003</td>
</tr>
<tr>
<td>AM1-5E</td>
<td>35</td>
<td>34</td>
<td>97%</td>
<td>D</td>
<td>NO</td>
<td>1/18/2011</td>
</tr>
<tr>
<td>AM1-6</td>
<td>37</td>
<td>36</td>
<td>97%</td>
<td>D</td>
<td>NO</td>
<td>1/18/2011</td>
</tr>
<tr>
<td>AM1-7</td>
<td>36</td>
<td>36</td>
<td>100%</td>
<td>D</td>
<td>NO</td>
<td>1/18/2011</td>
</tr>
<tr>
<td>AM1-9</td>
<td>8</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>YES</td>
<td>1/8/2003</td>
</tr>
<tr>
<td>AM1-EP</td>
<td>11</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>YES</td>
<td>1/8/2003</td>
</tr>
<tr>
<td>AV-1B</td>
<td>24</td>
<td>21</td>
<td>88%</td>
<td>NT</td>
<td>YES</td>
<td>7/20/2006</td>
</tr>
<tr>
<td>AV-7A</td>
<td>11</td>
<td>1</td>
<td>9%</td>
<td>NT</td>
<td>YES</td>
<td>7/20/2006</td>
</tr>
</tbody>
</table>
Opportunities

- Integrated approaches across multiple strategy levels

- Clear framework
 - Improved framework for technical and media strategies
 - Specify data sufficiency, temporal aspects, statistics
 - Include organization, program, stakeholder, administrative elements

- Streamlined and cost effective
 - 8-10 pages with tables and figures
 - < 25K for development

- Build consensus, goal oriented, includes schedule/budget elements, measures progress for interim and final goals
 - Continuity, automate decisions
 - Opportunity to revisit at a prescribed frequency (annually?)