

Monitoring by Function

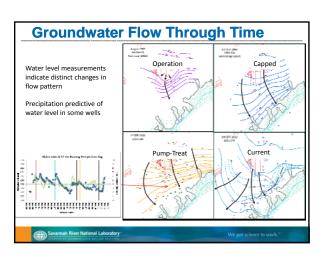
Baseline approach

- · Quarterly monitoring of contaminant concentration
- Yield limited insight into the conditions and processes that control plume stability and contaminant migration

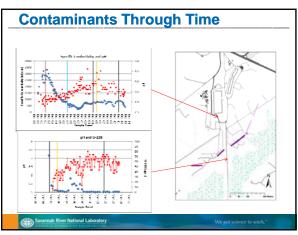
Monitoring by Function

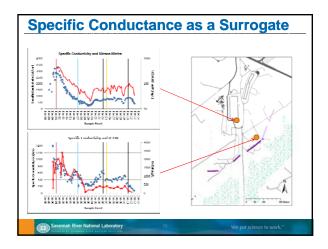
Add inexpensive measurements of controlling processes such as boundary conditions and geochemical master variables to provide functional assessment to supplement analysis of a reduced number of groundwater samples

- Hydrologic Boundary Conditions
- Master Variables

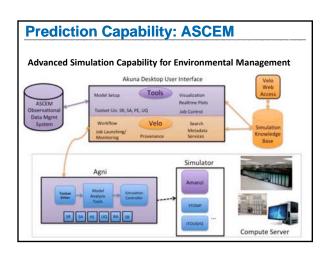

Boundary Conditions Master Variables Overall physical and hydrological driving forces Data Sources Master Variables are the key variables that control the Precipitation - Precipitation gauges and chemistry of the groundwater system Data types include meteorology, hydrology, geology, land use, operation/remediation history, e.g. telemetry, satellite data, groundwater level monitoring · Evapotranspiration - Landsat satellite data -Redox variables (ORP, DO, chemicals) Stream/River Flow – USGS databases, stream -pH flow gauges, satellite data - changes in production of water from Precipitation chemistry (Acid rain, Hg wells (process/potable/municipal/agricultural) -Specific Conductivity deposition) - NADP maps, point monitoring) -Biological Community (Breakdown/decay products) changes in discharge of water to basins/streams, dams, etc. Surface water (lakes, ponds, drainages, etc.) – Army Corps of Engineers, local authorities, -Temperature new infrastructure and construction etc. discontinuation of active industrial processes Pumping Wells (New and existing wells) -Local municipalities Existing sensors and tools to measure these variables Discharges (Industry outfalls etc.) - Local and Generally easy to measure and often overlooked inexpensively are commercially available government agencies Infrastructure/Construction -- Local and government agencies Savannah River National Laboratory Savannah River National Laboratory

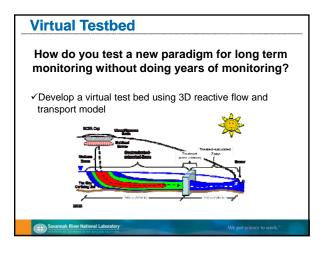
Technical Problem How do you test a new paradigm for long-term monitoring without doing years of long-term monitoring? Approach Use monitoring data from a waste site with a long history of data and well characterized changes to boundary conditions and master variables

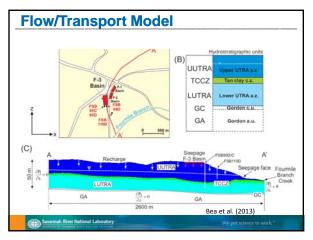

Field Demonstration of Approach

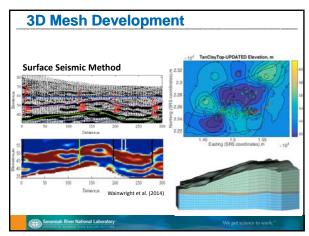

 Identify key controlling variables and implement strategy at a well characterized test bed

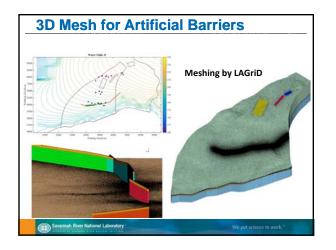
Savannah River National Laboratory

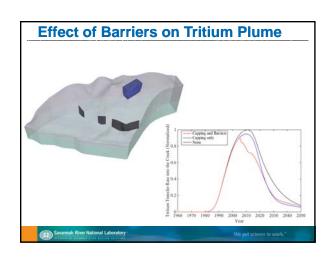

Complexities

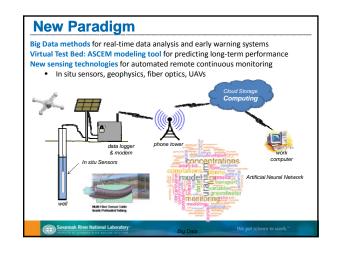

Savannah River National Laboratory

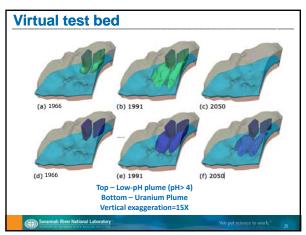

- Lots of "noise" in the measurements
- Small water level changes cause significant changes in measurement of stratified plume.
- Time scale of change Daily, Seasonal, Climatic ...
- Different areas of the plume show different trends
- Surrogate measurements seem to be robust but calibration issues with sensors an issue


How do you determine what is a significant change? • Determination of trigger levels for action

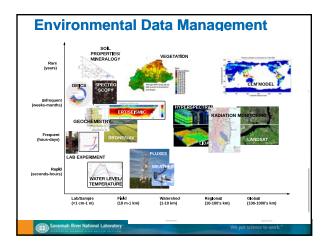

Yikes !!! - What to Do?

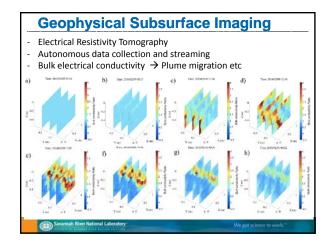


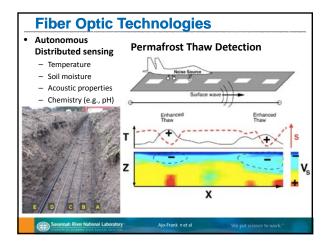




Geochemistry De Complex geochemistry - pH Dependent - Aqueous complexation - Surface complexation - Mineral dissolution/precipitation - Cation exchange - Decay	Surface complexation, cation exchange		log ₂₅ K (25° C
	(>50)U0;***>50H - H* + U0]*		-0.44
	$^{(2)}$ Cation Exchange NuX $\rightarrow Na^* + X$ $CAX (\rightarrow -Ch^{2n} - 3 X)AX ((\rightarrow A)^{2n} - 3 X)$		K (25 C) 1.0 0.316 1.71
	$\begin{split} & \underline{\mathrm{Rec}}_{4} + \mathbf{x} \\ & \underline{\mathrm{Mineral}} \mathrm{dissolution}/\mathrm{precipitation} \\ & \underline{\mathrm{Quart}} + \mathrm{sb} \mathrm{Sp}_{4} \mathrm{ing} \\ & \underline{\mathrm{Radina}} + \mathrm{sh} \mathrm{sh}^{-1} + \mathrm{SH}_{2} \mathrm{O} - \mathrm{H}^{+} \\ & \underline{\mathrm{Solum}} + \mathrm{sh} \mathrm{sh}^{-1} + \mathrm{SH}_{2} \mathrm{O} - \mathrm{H}^{+} \\ & \underline{\mathrm{Solum}} + \mathrm{sh} \mathrm{sh}^{-1} + \mathrm{SH}_{2} \mathrm{O} - \mathrm{H}^{+} \\ & \underline{\mathrm{Munat}} + \mathrm{sh} \mathrm{sh}^{-1} + \mathrm{SH}_{2} \mathrm{O} - \mathrm{H}^{+} \\ & \underline{\mathrm{Munat}} + \mathrm{sh} \mathrm{sh}^{-1} + \mathrm{SH}_{2} \mathrm{O} - \mathrm{H}^{+} \\ & \underline{\mathrm{Bushumt}} + \mathrm{sh} \mathrm{sh}^{-1} + \mathrm{SH}_{2} \mathrm{O} - \mathrm{H}^{+} \\ & \underline{\mathrm{Bushumt}} + \mathrm{sh} \mathrm{sh}^{-1} + \mathrm{SH}_{2} \mathrm{O} - \mathrm{H}^{+} \\ & \underline{\mathrm{Bushumt}} + \mathrm{sh} \mathrm{sh}^{-1} \mathrm{Sh} \mathrm{Sh} \mathrm{sh}^{-1} \mathrm{SH} \mathrm{Sh} \mathrm{sh} \mathrm{Sh} \mathrm{Sh} \mathrm{sh}^{-1} \mathrm{Sh} \mathrm{Sh}$	log ₂₀ K (25° C) -3.7501 7.57 0.1758 + 5440 7.738 -3.8 -22.251 -3.005	0.025 Ref 0 0 0 0 0 6 8 8 0
	$\begin{array}{l} \begin{array}{l} & & & \\ & $	log ₂₀ K (25 ⁴ C 13.99 4.96 10.59 16.16 22.88	






What Now?

Developing specific strategy for F-area

- Master variables and sensor/well locations through time for different contaminants
- Change in absorption/mobility for contaminants in system as pH evolves
- Establish trigger levels for boundary conditions
- Test hypotheses using virtual test bed
- Develop recommendations for key geochemical events for complex plumes of metal and radionuclides
- Investigate new methods for monitoring that are multidimensional to focus on measurement of changes.

Summary

Real/Virtual Test Bed at SRS F-Area

- Data analysis confirmed the feasibility of in situ monitoring
 ASCEM 3D flow and transport simulations quantified the correlations (spatially and temporally variable) but also the future trajectory
- UQ/sensitivity analysis: the long-term feasibility of monitoring Cost-effective strategies for long-term monitoring of contaminants (incl. Tritium)
 - In situ sensors, data streaming and data analytics for automated continuous monitoring
- Advanced technologies: geophysics, fiber optics, UAVs
- Data Analytics: QA/QC, correlations between master variables and contaminant concentrations
- Integrated approach (data + modeling) for system understanding/estimation

Savannah River National Laboratory