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Key Electron Acceptors For MNA 
(Yellow/Red Is BTEX Plume) (Concentration:  mg/L) 
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Dissolved Oxygen “Hole” Nitrate “Hole” Ferrous Iron “Blob” 

Sulfate “Hole” Dissolved Methane “Plume” 



MNA Mass Balance in Plumes: 
Electron-Acceptor-Limited Biodegradation 

ZAP! 

Biodegradation          
Capacity             ( 
17 mg/L) 

Observed Source 
Zone Concentration     
 (8 mg/L) 

Source Zone      
Concentration 
(25 mg/L)            

Groundwater Flow 
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Monitored Natural Attenuation (MNA)  versus  
Natural Source Zone Depletion (NSZD) 
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Monitored Natural Attenuation (MNA) 

• Mostly focused on plume (“how far”) 

• For hydrocarbon plumes, key focus on: 

Electron Acceptors 
• Dissolved Oxygen 
• Nitrate 
• Ferric iron (solid) 
• Sulfate 
• Methanogenesis 

Electron Donors 
• Benzene 
• Toluene 
• Ethylbenzene 
• Xylenes 



WAIT – THERE’S MORE! 
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Groundwater Mass Flux vs. Vapor Phase Mass Flux 

Original NSZD Conceptual Model 

Lundegard and Johnson, 2006; ITRC, 2009 
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Groundwater Mass Flux vs. Vapor Phase Mass Flux 

Original NSZD Conceptual Model 

Johnson Lundegard NSZD Conceptual Model:   
Include vapor pathway 

Lundegard and Johnson, 2006; ITRC, 2009  
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Groundwater Mass Flux vs. Vapor Phase Mass Flux 

Surprising Result:  
Vapor transport flux is  
1 to 2 orders of magnitude 
greater than  
groundwater flux! 

1-10% 

90-99% 

Lundegard and Johnson, 2006; ITRC, 2009; Suthersan 2015 
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Monitored Natural Attenuation (MNA)  versus  
Natural Source Zone Depletion (NSZD) 
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Monitored Natural Attenuation (MNA) 

• Mostly focused on plume 

• For hydrocarbon plumes, key focus on: 

Natural Source Zone Depletion (NSZD) 

Focused on source attenuation (“how 
long”) 

For hydrocarbon sites, key focus LNAPL 

Key reactions: 

LNAPL          CO2 +  Methane          

Methane         CO2      

 

Electron Acceptors 
• Dissolved Oxygen 
• Nitrate 
• Ferric iron (solid) 
• Sulfate 
• Methanogenesis 

Electron Donors 
• Benzene 
• Toluene 
• Ethylbenzene 
• Xylenes 



Direct Offgassing and Ebullition of Biodegradation Gases 

Source:  CSU 
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Right panel:  need permission from Journal of Contaminant Hydrology 103 (2009) 48–57   The impact of methanogenesis on flow and transport in coarse sand
Shujun Ye a, Brent E. Sleep b,⁎, Calvin Chien c
Source:  Yeh et al., 2009




Bubbles with 
methane and CO2! 

Direct Offgassing and Ebullition of Biodegradation Gases 

Source:  CSU 

Occurs in the pore 
space with LNAPL  
(Ng et al., 2015) 
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Right panel:  need permission from Journal of Contaminant Hydrology 103 (2009) 48–57   The impact of methanogenesis on flow and transport in coarse sand
Shujun Ye a, Brent E. Sleep b,⁎, Calvin Chien c
Source:  Yeh et al., 2009




Bubbles with 
methane and CO2! 

Direct Offgassing and Ebullition of Biodegradation Gases 

Ebullition 
channel! 

Source:  CSU 
Source:  Sleep et al., 2013 

Occurs in the pore 
space with LNAPL  
(Ng et al., 2015) 
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Methane 
bubbles! 

Source:  CSU 

Source:  
Ye et al., 
2009 

Starting Point:  Refinery and Terminal Petroleum Spills 
Generate Methane from Biodegradation  

Methane  
channel! 

Day 100 Day 102 

Day 113 Day 106 

Water Saturation 
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CO2 

CO2 

O2 

CH4 

LNAPL 
CH4 CO2 

   O2 Diffusion Down; CO2 Diffusion Up 

 Methane Oxidation 

 CH4, CO2 Outgassing 
 

CH4 and CO2 Outgassing, Ebullition 
  
Anaerobic Biodegradation of  LNAPL  
C11H25 +  4.75 H2O   →  2.375 CO2 +   8.625 CH4   

  

Ground Surface 

CH4 + 2O2 → CO2 + 2H2O 

NSZD Conceptual Model 
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CO2 

CO2 

O2 

CH4 

LNAPL 
CH4 CO2 

   O2 Diffusion Down; CO2 Diffusion Up 

 Methane Oxidation 

 CH4, CO2 Outgassing 
 

CH4 and CO2 Outgassing, Ebullition 
  
Anaerobic Biodegradation of  LNAPL  
C11H25 +  4.75 H2O   →  2.375 CO2 +   8.625 CH4   

  

Ground Surface 

CH4 + 2O2 → CO2 + 2H2O 

NSZD Conceptual Model 

Measure CO2 at surface to get NSZD rate 
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NSZD STUDIES:  Johnson et al, 2006; Lundegard and 
Johnson, 2006; Sihota et al., 2011; McCoy et al., 2013 
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Oxygen 

CO2 

Methane 

Lundegard and Johnson, 2006 
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What NSZD Rates are Being Observed? 

Locations across U.S. where carbon 
traps have been used to measure NSZD 
rates (E-Flux, 2015). 

 NSZD Study 
Site-wide NSZD Rate  
(gallons/ acre /year) 

Six refinery terminal sites 
(McCoy et al., 2012) 

2,100 – 7,700 

1979 Crude Oil Spill  
(Sihota et al., 2011) 

1,600 

Refinery/Terminal Sites in 
Los Angeles  

(LA LNAPL Wkgrp, 2015) 
1,100 – 1,700 

Five Fuel/Diesel/Gasoline 
Sites  (Piontek, 2014) 

300 - 3,100 

Eleven Sites,  
550 measurements   

(Palaia, 2016) 
300 – 5,600  

KEY  
POINT: 

Measured NSZD rates in the  
100s to 1000s of gallons per acre per year. 
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Alkanes: 
50,000  

mol C/m 

BTEX: 
3,000  

mol C/m 
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How Can NSZD Rates Be Used? 

• To confirm that LNAPL is 
biodegrading and quantify the 
rate 
 

• More accurate estimation of 
remediation timeframe by NSZD 
 

• Evaluate and/or replace an active 
remediation system   
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Optimizing Active LNAPL Remediation 
Compare to NSZD 

Active Systems (n=29) 

Minimum 
1.25 
gal/ac/yr 

Maximum 
10,200 
gal/ac/yr 
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/a
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e/

yr
) 

Avg. Site-Wide NSZD Rates (n=19) 

Minimum 
300 
gal/ac/yr 

Maximum 
7,700 
gal/ac/yr 

Active Remediation NSZD 

Median = 1,400 
gal/ac/yr Median = 1,800 

gal/ac/yr 

Source (active systems): Palia, 2016 Multiple Sources 
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Active Remediation vs. NSZD Rates 
Palaia, 2016 

Active Systems (n=29) 

Minimum 
1.25 
gal/ac/yr 

Maximum 
10,200 gal/ac/yr 

Ra
te

 o
f R

em
ed

ia
ti

on
 (g

al
/a

cr
e/

yr
) 

Avg. Site-Wide NSZD Rates (n=19) 

Minimum 
300 gal/ac/yr 

Maximum 7,700 
gal/ac/yr 

Active Remediation NSZD 

Median = 1,400 
gal/ac/yr 

Median = 1,800 
gal/ac/yr 

Source (active systems): Palia, 2016 Multiple Sources 
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NSZD Site Closure: 3 Case Studies 
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Kansas Tank Farm   
• Active system with negligible LNAPL recovery rates 
• NSZD measurements from 2012-2014 (Carbon traps + 

thermal monitoring) 
• KDHE approved system shutdown in 2015 

California Pipeline Terminal 
• Active system with LNAPL recovery rates ~20 gal/yr  
• NSZD rates measured at >3,000 gal/ac/yr  
• State Water Board ruling: “Can’t dictate technology” 
• NSZD identified as viable remediation technology  

Oregon Railyard  
• Active systems: skimming, vacuum enhanced fluid 

recovery, total fluids recovery 
• NSZD rates were an order of magnitude higher than 

current methods 
• ODEQ approved conditional NFA for the site 
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Source: Keith Piontek, TRC Consultants 

NSZD Rates in Gallons Per Acre Per Year 
Measured by Carbon Traps 
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Source: SB Johnny 
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Can We Optimize How We 
Measure NSZD? 



“Turning a Hot 
Compost Pile” 

Source: SB Johnny 
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CO2 

CO2 

O2 

CH4 

LNAPL 
CH4 CO2 

   O2 Diffusion Down; CO2 Diffusion Up 

 Methane Oxidation 

 CH4, CO2 Outgassing 
 

CH4 and CO2 Outgassing, Ebullition 
  
Anaerobic Biodegradation of  LNAPL  
C10H22 +  H2O   →   CO2 +  CH4   

  

Ground Surface 

CH4 + 2O2 → CO2 + 2H2O  + HEAT 

*Note: size of arrows indicate degree of release  

NSZD Conceptual Model 

Measure Heat Generation in Subsurface to get NSZD Rates 

Heat 

 
28 



29 
 

29 



30 

Temperature Method: 
30 mol/m2/year 
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Temperature Method: 
0.95 um/m2/sec 
600 gal/acre/yr 
 
Sihota et al., 2016: LI-COR 
1.1 um/m2/sec 
690 gal/acre/yr 
 



In Place 

CSU/GSI/TRC Thermal NSZD Technology Rollout  
2012 - 2016 

Source: CSU 

 416 Thermo-
couples  

 38 Wireless 
Modems  

 ~8 million 
temperature 
values 

Planned 

Sale et al., Feb. 2014 
Provisional Patent  
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Ein  - Eout + Erxn  = dE/dt 
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Calculating LNAPL Mass Loss by NSZD 

First Law of 
Thermodynamics 

Erxn 

dE/dt 
 

Eout 
Ein 

Ein Eout 

Eout 
Eout Ein 

Presenter
Presentation Notes
Essentially a mass balance
Similar to groundwater flow equation (with the exception of Erxn)
Complex equation can be simplified by correcting for background



Ein  - Eout + Erxn  = dE/dt 
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Calculating LNAPL Mass Loss by NSZD 

• Lateral energy loss 
negligible 

First Law of 
Thermodynamics 

Erxn 
dE/dt 
 

Eout 

Ein Eout 

Eout 
Eout Ein 

Ein 

Presenter
Presentation Notes
Essentially a mass balance
Similar to groundwater flow equation (with the exception of Erxn)
Complex equation can be simplified by correcting for background



Ein  - Eout + Erxn  = dE/dt 
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Calculating LNAPL Mass Loss by NSZD 

• Lateral energy loss 
negligible 

• Background location 
corrects for solar 
energy input  

First Law of 
Thermodynamics 

Erx

n dE/dt 
 

Eout 

Ein Eout 

Eout 
Eout Ein 

Ein 

Presenter
Presentation Notes
Essentially a mass balance
Similar to groundwater flow equation (with the exception of Erxn)
Complex equation can be simplified by correcting for background



Ein  - Eout + Erxn  = dE/dt 
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Calculating LNAPL Mass Loss by NSZD 

• Lateral energy loss 
negligible 

• Background location 
corrects for solar 
energy input  

• Steady-state; no 
change in storage 

First Law of 
Thermodynamics 

Erxn 

Eout 

Ein Eout 

Eout 
Eout Ein 

Ein 

dE/dt 
 

Presenter
Presentation Notes
Essentially a mass balance
Similar to groundwater flow equation (with the exception of Erxn)
Complex equation can be simplified by correcting for background



     Eout =  Erxn 

37 

Calculating LNAPL Mass Loss by NSZD 

• Lateral energy loss 
negligible 

• Background location 
corrects for solar 
energy input  

• Steady-state; no 
change in storage 

First Law of 
Thermodynamics 

Erxn 

Eout 

Eout 

Presenter
Presentation Notes
Essentially a mass balance
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NSZD Conceptual Model 

CH4 

O2 

 Methane Oxidation 
CH4 + 2O2 → CO2 + 2H2O + Heat 

CO2 

CO2 

Heat 

Heat 

CO2  Anaerobic Biodegradation  
of  LNAPL  
C10H22 +  H2O   →   CO2 +  CH4   

CH4 

Mobile or Residual LNAPL 

Groundwater 

Net Temperature 

Dissolved Phase Plume 

D
ep

th
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NSZD Conceptual Model 

CH4 

O2 

CO2 flux at Ground Surface 

 Methane Oxidation 
CH4 + 2O2 → CO2 + 2H2O + Heat 

CO2 

CO2 

Heat 

Heat 

CO2  Anaerobic Biodegradation  
of  LNAPL  
C10H22 +  H2O   →   CO2 +  CH4   

CH4 

Mobile or Residual LNAPL 

Adapted from: ITRC, 2009 

Groundwater 

Net Temperature 

Dissolved Phase Plume 

Where:   

KT thermal conductivity (W/m°C)  
Z   depth interval of heat flux (m) 
T   change in net temperature (°C)  
  

Fourier’s Law:   Eout = KT dT/dz 
Heat flux:  
(watts/m2) 
 D

ep
th
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Both Combustion and Biodegradation 
Generate Heat 

Heat of combustion for gasoline: 
45 kilojoules per gram 

Burn 1 gram gas:   
45 kilojoules 

Biodegrade 1 gram gas:   
45 kilojoules  
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Last Step:  Calculate the NSZD Rate 

NSZD Rate 
(Mass degraded 

per area per time)   

   Erxn          
Hrxn          

Heat Flux (joules/area/time) 

Heat of Reaction  
(joules per mass) 

 

NSZD Rate can be converted to 
gallons per acre per year 

Hrxn =  45 kilojoules per gram 

= 
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Field Installation for Thermal NSZD 

SOURCE:  CSU 



43 SOURCE: CSU 

Thermocouple on 
temperature monitoring 
“stick.” 

Field Installation: Thermal Monitoring System 



44 SOURCE: CSU 

Thermocouple on 
temperature monitoring 
“stick.” 

Field Installation: Thermal Monitoring System 

Installation of stick using direct 
push rig.   



45 SOURCE: CSU 

Thermocouple on 
temperature monitoring 
“stick.” 

Field Installation: Thermal Monitoring System 

Solar power supply and 
weatherproof box with 
data logger and wireless 
communications system.  

Installation of stick using direct 
push rig.   



(Stockwell, 2015; Colorado State University) 

Results from One Site: 
Background-Corrected Temperature  
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HEAT SIGNAL OVER TIME 

(Stockwell, 2015; Colorado State University) 
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www.ThermalNSZD.com Patent Pending 
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But Natural Variation in Soil Temperature 
Complicate this Energy Balance 
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28.0 
C° 

20.0 
C° 



Seasonal Change, Background Correction vs. Depth 

Natural Seasonal Temperature 
Changes  

Heat Signal from Biodegradation =  Temp. 
in LNAPL – Background Temp. 
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Subtract Out Background Soil Temperature 
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2.5 C° 

0.5 C° 



Thermal NSZD Dashboard 
Temperature vs. Depth 
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Thermal NSZD Dashboard 

38,000 gallons of LNAPL degraded 
since NSZD monitoring began 
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• One-time installation for getting 
continuous NSZD rates  
 

• Remote monitoring via secure 
Dashboard 
 

• Can be “silent sentinel” for change of 
conditions 
 

• One way to optimize NSZD by  
replacing frequent site visits 

          Advantages    Disadvantages 

• Indirect measure of NSZD 
 

• Requires oxidation of 
methane 
 

• Limited comparisons with 
other NSZD methods 
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Wrap Up 
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38,000 gallons of LNAPL degraded 
since NSZD monitoring began 
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QUESTIONS? 

FOR MORE INFORMATION:  
 
Charles Newell 
cjnewell@gsi-net.com 
 
Tom Sale 
tsale@engr.colostate.edu 
 
John Connor  
jac@gsi-net.com  
 
Poonam Kulkarni  
prk@gsi-net.com   
 
 

 
 

Source: CSU 
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• Spare Slides 



14C Method:  When was the Carbon Removed 
from Atmosphere? 
 

LNAPL Carbon is from…. 
Plants that removed carbon 
from atmosphere by plants 
millions of years ago – all 14C is 
gone by now. 

Modern Carbon is from…. 
plants that removed carbon from 
atmosphere recently, 14C has not 
broken down yet… 

Dividing Line:   
60,000 years ago 

“Hydrocarbon” 
CO2 

“Modern” CO2  
58 
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1 um/m2/sec = 
626 gal/acre/year  



60 

Sweeney and Ririe, 2014 
Basic theory to estimate 
rate 
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