Use of Nanotechnology in Remediation of Radionuclides and Heavy Metals

Frank (Fengxiang) X. Han
Dept. of Chemistry and Biochemistry
Jackson State University
Global Perspective

ion by Heavy Metals/Trace Elements
Driving Force

- Global Population Increase and Civilization
 (6.91 billion, by 1.1% in 2009)
How is the Earth Surface polluted by Heavy Metals/Trace Elements?

Heavy Metal/Trace Element Production

= ?

Pollution
Global Annual Production of Zn, Pb, Cu, Cr, Ni, and Cd since Industrial Age
Cumulative Production of Zn, Pb, Cu, Cr, Ni, and Cd since Industrial Age
Annual production of As since Industrial Age since Industrial Age

(a) As Mine
(b) As in Coal
(c) As in Petroleum
(d) Gross Annual As
Gross As Production, As Production from Petroleum and Coal since Industrial Age

(a) % As from coal and petroleum over gross As

(b) % As from petroleum over As from coal and petroleum

Year

Million Tonnnes As

Year
Annual and Cumulative Hg Production

Annual Hg Mine

Annual Hg in Coal

Cumulative Hg

Cumulative Total Hg
Potential Cumulative Anthropogenic Inputs to Global Arable Soil (0-10 cm)
Compared to Global Soil and Lithosphere

Ratios of Anthropogenic
Cumulative Input /World
Soil

Ratios of Anthropogenic
Cumulative Input
/Lithosphere
Global Metal Burden per Capita

The diagrams illustrate the cumulative metal burden per capita from 1900 to 2000, showing the levels of various metals (As, Cd, Hg) and others (Cu, Zn, Pb, Cr, Ni) across different years.
Global Nuclear Radionuclide Pollution
With the fast growth of global population, the world consumption of energy has been continuously increasing at an annual rate of 2-3%. Fossil fuel energy is the major source of current global energy consumption (37% petroleum, 25% coal and 22% natural gas).

Due to increasing cost of fuel energy supplies and global warming, nuclear energy has become a promising emission-free clean energy. Currently, nuclear energy accounts for 6% and 8% of the total energy consumption in the world and the U.S., respectively.
Nuclear Power Plant Accidents

- 99 nuclear power plant accidents worldwide
- 4 major accidents including the most recent Fukushima Daiichi nuclear disaster (2011), Chernobyl disaster (1986), Three Mile Island accident (1979), and the SL-1 accident (1961).

- Chernobyl: ^{137}Cs, ^{90}Sr, ^{238}Pu and ^{241}Am
- Fukushima Daiichi: ^{134}Cs, ^{137}Cs, ^{60}Co and ^{131}I

- On the other hand, radionuclides were in colloids of groundwater of nuclear ground detonation sites such as the Nevada Test Site. Dissolved organic carbon mobilized actinides (Am, Pu, Np and U) in the groundwater of these sites.
Developing Novel Nanomaterials for Removing Radionuclides and Heavy Metals from Water
To functionalize meso silica for adsorption of Cs, Co, and Sr in contaminated water.
MCM-41 (Mobil Composition of Matter No. 41) is a mesoporous aluminosilicate with a hierarchical structure.

- **Characterization**
 - Particle Size and Zeta Potential
 - FTIR and Raman Spectroscopy
 - TEM Images

Adsorption of Cs, Sr, and Co on thiol-functionalized MCM-41

Prepare a mix solution of CsNO$_3$, Sr(NO$_3$)$_2$, and Co(NO$_3$)$_2$ at serial concentrations. Add sorbents, shake and filter supernatant. Inductively coupled plasma-mass spectrometry (ICP-MS) was applied.

TEM pictures of MCM-41-SH (a and b). The pore sizes were indicated as arrows, measured as 3 nm or 6 nm.
FTIR spectra of MCM-41-SH and MCM-41. The weak peak around 2600 cm\(^{-1}\) indicated the presence of the SH group.

Raman spectra of MCM-41 and MCM-41-SH. Aliphatic carbon chains appeared from 600 cm\(^{-1}\) to 1300 cm\(^{-1}\); the peak around 2600 cm\(^{-1}\) confirmed the existence of –SH function group.
Cs adsorption isotherm from water on MCM-41-SH

Langmuir model of Cs adsorption from water on MCM-41-SH

\[
Q = \frac{Q_m y}{1 + \frac{y}{Q_m}}
\]

where:
- \(Q \) is the adsorption capacity (mg g\(^{-1}\))
- \(y \) is the equilibrium concentration (mg L\(^{-1}\))
- \(Q_m \) is the maximum adsorption capacity (mg g\(^{-1}\))

Freundlich model of Cs adsorption from water on MCM-41-SH

\[
\log Q = \frac{1}{n} \log y + \log K_f
\]

where:
- \(Q \) is the adsorption capacity (mg g\(^{-1}\))
- \(y \) is the equilibrium concentration (mg L\(^{-1}\))
- \(K_f \) is the Freundlich constant
- \(n \) is the Freundlich exponent

Graphs showing the relationship between adsorption capacity and equilibrium concentration for Langmuir and Freundlich models.
Table 1 Comparison of adsorption of Cs on MCM-41-SH as described with Langmuir and Freundlich models

<table>
<thead>
<tr>
<th></th>
<th>Langmuir Model</th>
<th>Freundlich Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>R²</td>
<td>0.93</td>
<td>R²</td>
</tr>
<tr>
<td>b, L mg⁻¹</td>
<td>0.12</td>
<td>n</td>
</tr>
<tr>
<td>Q, mg g⁻¹</td>
<td>29.24</td>
<td>Kᵢ</td>
</tr>
</tbody>
</table>

This study indicated that commercially available MCM-41 after being functionalized became more selective on Cs, one of elements with the most difficult to remove. For the next stage study, I consider to make sorbent recyclable.
Developing meso-silica templated nano carbon for removing Cs
Mesosilica has been used as a stable template to synthesize mesoporous carbon with various functional groups such as hydroxyl, carboxyl, and carbonyl groups, etc.

Carbon Precursor

- Ferulic acid, as the carbon precursor, was used for the adsorption of Cs(I) and other several major nuclides such as Co(II) and Sr(II).
- Ascorbic acid as C precursor and binding to nano magnetite Fe_3O_4, for removing Hg(II) and Pb(II).
Characterization

TEM, FTIR, and BET are applied to illustrate functional groups and pore structure.

TEM images of ferulic acid-NC (a) and ascorbic acid-NC (b).
FTIR spectra of ferulic acid-NC (a) and ascorbic acid-NC (b) (upper figure) and BET isotherm of two nano carbons (lower left). Magnetic effect after a permanent magnet was applied to the ascorbic acid-NC (lower right).
Kinetic study of Co, Sr, and Cs with 0.3 g/L ferulic acid-NC at 25°C with pH=6~7. Kinetic data (a), pseudo-first order (b), and pseudo-second order (c) were shown. All three elements fit pseudo-second order well.

Kinetic study of Hg with 0.3 g/L ascorbic acid-NC at 25°C with pH=6~7. Kinetic data (d), pseudo-second order (e), and pseudo-first order (f) were shown.

Adsorption Kinetics
Adsorption Isotherms of Co, Sr and Cs: Phase I and II

Adsorption isotherms of Co (a), Sr(c), and Cs(e) with 0.3 g/L ferulic acid-NC at 25°C with pH=6~7:

Langmuir model of Co(b), Sr(d), and Cs(f) for Phase I;

Freundlich model of Co(g), Sr(h), and Cs(i) for Phase II.
Adsorption isotherm of Hg(a) and Pb(c), with 0.3 g/L ascorbic acid-NC, at 25°C, with pH=6~7: Langmuir model of Hg(b) and Pb(d).
Thermodynamic study of Hg(a) and Pb(c) on ascorbic-NC. Van’t Hoff model linear plot was applied to Hg(b) and Pb(d).
Table 3 Thermodynamic parameters of Hg and Pb at 10 and 20 mg/L, on ascorbic acid-NC with 0.3 g/L at pH~6.7.

<table>
<thead>
<tr>
<th>Metals</th>
<th>Temperature</th>
<th>Initial Concentrations of metals</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10 mg/L</td>
<td>ΔG</td>
<td>lnK_C</td>
<td>ΔH</td>
<td>ΔS</td>
<td>R²</td>
<td>20 mg/L</td>
<td>ΔG</td>
<td>lnK_C</td>
<td>ΔH</td>
<td>ΔS</td>
<td>R²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(kJ mol⁻¹)</td>
<td>(kJ mol⁻¹)</td>
<td>(J mol⁻¹ K⁻¹)</td>
</tr>
<tr>
<td>Hg</td>
<td>15</td>
<td></td>
<td>-1.51</td>
<td>0.63</td>
<td>0.63</td>
<td>-2.1</td>
<td>0.88</td>
<td>1</td>
<td>-2.73</td>
<td>1.09</td>
<td>6.4</td>
<td>7.93</td>
<td>34.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>-2.1</td>
<td>0.88</td>
<td>11.6</td>
<td>2.64</td>
<td>0.32</td>
<td>-1.88</td>
<td>0.76</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td></td>
<td>-2.6</td>
<td>1.09</td>
<td>11.6</td>
<td>2.64</td>
<td>0.32</td>
<td>-1.88</td>
<td>0.76</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>15</td>
<td></td>
<td>-0.57</td>
<td>0.24</td>
<td>0.037</td>
<td>1.01</td>
<td>-0.42</td>
<td>0.38</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td>0.8</td>
<td>-0.32</td>
<td>0.037</td>
<td>1.01</td>
<td>-0.42</td>
<td>0.38</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45</td>
<td></td>
<td>-1.07</td>
<td>0.4</td>
<td>0.037</td>
<td>1.01</td>
<td>-0.42</td>
<td>0.38</td>
<td>0.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-ΔG and +ΔH indicates spontaneous adsorption process; +ΔH indicates endothermic adsorption process
Adsorption of Cs using magnetic im-functionalized calixarene complex
Calixarene is a building block material in the macrocyclic molecular group. Its unique character was the three-dimensional pre-organization, making it a potential candidate of receptor to many cations and anions, which exhibited potentials for the treatment of nuclear wastewater.

The present study is to synthesize the stable and efficient magnetic calixarene composite for the treatment of Co\(^2+\), Sr\(^2+\), and Cs\(^+\). Two types of commercially available upper-rim sulfur or phosphorous functionalized calixarene were applied and compared. Meso-silica as the anchor was applied to connect the Fe\(_3\)O\(_4\) part and the calixarene part.
Experiment

Synthesis

Characterization
TEM, FTIR, SEM, XRD, BET methods will be applied to elucidate the unique structure of the calix complex.

Adsorption
Cs (from 0 to 2000 mg/L) and Sr solution were prepared.
To examine any competitive behavior with other heavy metals, mix solutions of Sr, Co, Cd, Hg, and Pb from 0 to 2000 mg/L.
TEM images of Fe$_3$O$_4$ NP (a), Si-MN (b), S-Si-MN (c), and P-Si-MN (d).

High resolution TEM pictures showed S-Si-MN (a), P-Si-MN (b), and Si-MN (c).
SEM results of P-Si-MN (a&b) and S-Si-MN (c&d).
Energy Dispersive Spectroscopy (EDS) analysis showed the elemental mapping of each composite. On the top is the SEM image of S-Si-MN, and the corresponding elemental mapping results are on the right. The brighter the color, the higher percentage of the element is in that zone. On the bottom are the SEM image of P-Si-MN and the elemental mapping.
FTIR spectra of phosphoryl group calixarene (a), sulfonic group calixarene (b), S-Si-MN (c), P-Si-MN (d), and Si-MN (e).
Cs Adsorption in Cs Alone System

Adsorption of Cs on S-Si-MN. (a) Isotherm; (b) Freundlich model and P-Si-MN (c) isotherm; (d) Freundlich model.

Far right shows magnetic separation
Sr Adsorption in Sr Alone System

In the individual system, the adsorption of Sr on P-Si-MN. (a) isotherm; (b) Freundlich model; (c) Langmuir model on Phase I; (d) Langmuir model on Phase II.
In the multi-cation system, the adsorption isotherm of Co on S-Si-MN (a) and P-Si-MN (c); Freundlich model from S-Si-MN (b) and P-Si-MN (d).
Sr Adsorption in a Multimetal System

In the multi-cation system, the adsorption of Sr on S-Si-MN (a) isotherm & (b) Freundlich model; on P-Si-MN (c) isotherm & (d) Freundlich model. The inlet of Fig. d showed the Langmuir model of Phase I.
Cd Adsorption in a Multimetal System

In the multi-cation system, the adsorption isotherm of Cd on S-Si-MN (a) and P-Si-MN (c); Freundlich model from S-Si-MN (b) and P-Si-MN (d).
Hg Adsorption in a Multimetal System

In the multi-cation system, the adsorption isotherm of Hg on S-Si-MN (a) and P-Si-MN (c); Freundlich model from S-Si-MN (b) and P-Si-MN (d).
In the multi-cation system, the adsorption isotherm of Pb on S-Si-MN (a) and P-Si-MN (c); Freundlich model from S-Si-MN (b) and P-Si-MN (d).
Comparison of Adsorption Capacity

<table>
<thead>
<tr>
<th>Adsorbents</th>
<th>Adsorbates</th>
<th>pH</th>
<th>Maximum adsorption capacity (mg/g)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>aminated graphene oxide NP</td>
<td>Co</td>
<td></td>
<td>116.35</td>
<td>Fang et al., 2014</td>
</tr>
<tr>
<td>Graphene oxide hydroxyapatite NP</td>
<td>Sr</td>
<td>2-4</td>
<td>702.18</td>
<td>Wen et al., 2014</td>
</tr>
<tr>
<td>Graphene oxide complexed with nitrogen and oxygen groups</td>
<td>Cs</td>
<td></td>
<td>184.74</td>
<td>Sun et al., 2013</td>
</tr>
<tr>
<td></td>
<td>Sr</td>
<td></td>
<td>147.20</td>
<td></td>
</tr>
<tr>
<td>P Si MN</td>
<td>Co</td>
<td>6-7</td>
<td>900</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>Sr</td>
<td></td>
<td>30000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cs</td>
<td></td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>
Other Soil Remediation in my group

- Phytoremediation
- Bioremediation
- Electronic Kinetic Remediation
- Coupled Electronic Kinetic-Phytoremediation
- Soil Washing
- Coupled Electronic Kinetic-Soil Washing
Conclusion

Our lab developed a series of promising meso/nanomaterials for cleaning up Cs, Sr, Co and other radionuclides as well as heavy metals (Cd, Hg, Pb) in contaminated water.

This study shows the promise of novel meso/nanomaterials in removing common radionuclides and heavy metals and provides alternative solutions for water pollution from nuclear industry development.
Acknowledgement

- This study was supported by the U.S. Nuclear Regulatory Commission (NRC-HQ-84-15-G-0042 and NRC–HQ-12-G-38-0038).
Recent Publications

- Han et al. 2002. Industrial age anthropogenic inputs of heavy metals into the pedosphere. *Naturwissenschaften* 89: 497-504
Thanks!