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Global Perspective

ion by Heavy Metals/Trace
Elements




Driving Force

= Global Population Increase and Civilization
(6.91 billion, by 1.1% in 2009)
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How is the Earth Surface polluted
by Heavy Metals/Trace Elements?

Heavy Metal/Trace Element
Production

=7?

Pollution




GlobalAnnual Production of Zn, Pb,
Cu, Cr, Ni, and Cd since Industrial Age
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Cumulative Production of Zn, Pb, Cu,
Cr, Ni, and Cd since Industrial Age
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Annual production of As since Industrial
Age since Industrial Age
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Gross As Production, As Production from
Petroleum and Coal since Industrial Age
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Annual and Cumulative Hg Production
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Potential Cumulative Anthropogenic
Inputs to Global Arable Soil (0-10 cm)
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Compared to Global Soil and Lithosphere
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‘ Global Metal Burden per Capita
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i Global Nuclear Radionuclide Pollution




Nuclear Energy

With the fast growth of global population, the world consumption of
energy has been continuously increasing at an annual rate of 2-3%.
Fossil fuel energy is the major source of current global energy
consumption (37% petroleum, 25% coal and 22% natural gas)

Due to increasing cost of fuel energy supplies and global warming,
nuclear energy has become a promising emission-free clean energy.
Currently, nuclear energy accounts for 6% and 8% of the total
energy consumption in the world and the U.S., respectively



Nuclear Power Plant Accidents

99 nuclear power plant accidents worldwide

4 major accidents including the most recent Fukushima Daiichi
nuclear disaster (2011), Chernobyl disaster (1986), Three Mile
Island accident (1979), and the SL-1 accident (1961).

Chernobyl: 137Cs, 90Sr, 238Pu and 241Am
Fukushima Daiichi: 134Cs, 137Cs, 60Co and 131l

On the other hand, radionuclides were in colloids of groundwater of
nuclear ground detonation sites such as the Nevada Test Site.
Dissolved organic carbon mobilized actinides (Am, Pu, Np and U) in
the groundwater of these sites.



“1g Novel Nanomaterials for
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To functionalize meso silica for adsorption
and Sr in contaminated water




MCM-41 (Mobil Composition of Matter No. 41) is a
mesoporous alumosilicate with a hierarchical structure.

Characterization

Particle Size and Zeta Potential
FTIR and Raman Spectroscopy
TEM Images

Adsorption of Cs, Sr, and Co on thiol-
functionalized MCM-41

Prepare a mix solution of CsNO,, Sr(NO,),, and
Co(NO,), at serial concentrations. Add sorbents,
shake and filter supernatant. Inductively coupled

plasma-mass spectrometry (ICP-MS) was applied.

TEM pictures of MCM-41-SH (a and b).
The pore sizes were indicated as arrows,
measured as 3 nm or 6 nm.
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FTIR spectra of MCM-41-SH and MCM-41.

The weak peak around 2600 cm-1 indicated
the presence of the SH group
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SH. Aliphatic carbon chains appeared from
600 cm-1 to 1300 cm-1; the peak around

2600cm-1 confirmed the existence of —SH

function group.
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Table 1 Comparison of adsorption of Cs on MCM-41-SH as described
with Langmuir and Freundlich models

Langmuir Model Freundlich Model
R? 0.93 R? 0.93
b, L mg! 0.12 n 1.33
Q, mg g’! 29.24 K, 5.28

This study indicated that commercially available MCM-41 after being functionalized became more selective on Cs, one

of elements with the most difficult to remove. For the next stage study, I consider to make sorbent recyclable.



ng meso-silica templated nano
irbon for removing Cs




Mesosilica has been used as a stable template to
synthesize mesoporous carbon with various functional
groups such as hydroxyl, carboxyl, and carbonyl groups,
etc.

Carbon Precursor

o Ferulic acid, as the carbon precursor, was used for the adsorption of
Cs(l) and other several major nuclides such as Co(ll) and Sr(ll).

o Ascorbic acid as C precursor and binding to nano magnetite Fe;0,,
for removing Hg(Il) and Pb(ll).

HO
i Ho. =~ 20 o
HBCOU\)\OH :
HO —
HO OH

Ferulic acid Ascorbic acid



= Characterization

TEM, FTIR, and BET are applied to illustrate functional groups and pore
structure.

TEM images of ferulic acid-NC (a) and ascorbic acid-NC (b).
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Adsorption Kinetics

40

Kinetic study of Co, Sr, and Cs with 0.3
g/L ferulic acid-NC at 25°C with
pH=6~7. Kinetic data (a), pseudo-first
order (b), and pseudo-second order (¢)
were shown. All three elements fit

pseudo-second order well.

Kinetic study of Hg with 0.3 g/L
ascorbic acid-NC at 25°C with pH=6~7.
Kinetic data (d), pseudo-second order
(e), and pseudo-first order (f) were

shown.
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Phase Il.
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Table 3 Thermodynamic parameters of Hg and Pb at 10 and 20 mg/L, on ascorbic acid-

NC with 0.3 g/L at pH~6,7.

Metals  Temperature Initial Concentrations of metals
'c 10 mgL 20 mglL
AG  hKe  AH AS R’ AG  kKe  AH AS R’
(kI mol") kImol') (Jmol' K (kI mol") kImol") (mol K
Hg 15 151 063 1 183076 0.74
30 21088 116 456 27 109 79 343
45 26 109 28 107
Ph 15 057 04 0037 101 -042 0.38
30 08 03 264 <105
45 10704 188 071

-A G and + AH indicates spontaneous adsorption process; 4 AH indicates endothermic adsorption process
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Calixarene is a building block material in the macrocyclic molecular group. Its
unique character was the three-dimensional pre-organization, making it a
potential candidate of receptor to many cations and anions, which exhibited
potentials for the treatment of nuclear wastewater.

The present study is to synthesize the stable and
efficient magnetic calixarene composite for the
treatment of Co2+, Sr2+, and Cs+. Two types of
commercially available upper-rim sulfur or
phosphorous functionalized calixarene were
applied and compared. Meso-silica as the
anchor was applied to connect the Fe O part
and the calixarene part.




» Experiment
Synthesis

4-sulfonic calixidlarene or

0,0-bis(diethoxyphosphoryl)-
' Slicacage calixidlarene

Characterization

TEM, FTIR, SEM, XRD, BET methods will be applied to elucidate the unique structure of the calix
complex.

Adsorption

Cs (from 0 to 2000 mg/L) and Sr solution were prepared.

To examine any competitive behavior with other heavy metals, mix solutions of Sr, Co, Cd, Hg, and
Pb from 0 to 2000 mg/L.




100 nm 100 nm

e

TEM images of Fe_O NP (a), Si-MN (b), S-Si-MN (c), and P-Si- High resolution TEM pictures showed S-Si-MN (a), P-Si-MN
MN(d). 3 4 (b), and Si-MN (c).




SEM results of P-Si-MN (a&b) and S-Si-MN (c&d).




5i ka1 Felal_Z

o) Si P Fe O Si S Fe
29.98 26.65 26.83 16.54 40.47 32.77 7.01 19.75
47.02 23.82 21.73 7.43 59.26 27.33 512 8.29
Energy Dispersive Spectroscopy (EDS) analysis showed the elemental mapping of each composite. On the top is the SEM

image of S-Si-MN, and the corresponding elemental mapping results are on the right. The brighter the color, the higher percentage
of the element is in that zone. On the bottom are the SEM image of P-Si-MN and the elemental mapping.
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Cs Adsorption in Cs Alone System
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Adsorption of Cs on S-Si-MN. (a) Isotherm; (b) Freundlich model and P-Si-MN (c¢) isotherm; (d) Freundlich model.

Far right shows magnetic separation



Sr Adsorption in Sr Alone System
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In the individual system, the adsorption of Sr on P-Si-MN. (a) isotherm; (b) Freundlich

model; (¢) Langmuir model on Phase I; (d) Langmuir model on Phase II.



Co Adsorption in Multimetal system

300

200

q, {mggh
lozlg,)

100 -

o @

o 300 GO 200 1200
C, (mpiL)

1204

Q00 - *

= =
E 00 ¥
= 4
L 4
0 -
‘. L
a - - 4
8] 200 404 00 200 10gC,
C, (mg/L)

In the multi-cation system, the adsorption isotherm of Co on S-Si-MN (a) and P-
Si-MN (¢); Freundlich model from S-Si-MN (b) and P-Si-MN (d).



Sr Adsorption in a Multimetal System
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Cd Adsorption in a Multimetal System
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In the multi-cation system, the adsorption isotherm of Cd on S-Si-MN (a) and P-Si-MN (c¢); Freundlich model

from S-Si-MN (b) and P-Si-MN (d).



Hg Adsorption in a Multimetal System
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In the multi-cation system, the adsorption isotherm of Hg on S-Si-MN (a) and P-Si-MN (c); Freundlich model

from S-Si-MN (b) and P-Si-MN (d).



Pb Adsorption in a Multimetal System
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Comparison of Adsorption Capacity

Adsorbents | Adsorbates n- References

aminated

graphene oxide Co
NP 116.35 Fang et al., 2014

Graphene oxide
i hydroxyapatite
N{, VL Sr 2.4 702.18 Wen et al., 2014

Graphene oxide
Cs
complexed 184.74 Sun et al., 2013

with nitrogene
and oxygene Sr
groups 147.20
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Other Soil Remediation in my group

Phytoremediation

Bioremediation

Electronic Kinetic Remediation

Coupled Electronic Kinetic-Phytoremediation
Soil Washing

Coupled Electronic Kinetic-Soil Washing



Conclusion

Our lab developed a series of promising meso/nanomaterials for cleaning up
Cs, Sr, Co and other radionuclides as well as heavy metals (Cd, Hg, Pb) in
contaminated water.

This study shows the promise of novel meso/nanomaterials in removing
common radionuclides and heavy metals and provides alternative solutions for
water pollution from nuclear industry development.
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