Remedy Selection and Implementation for Radionuclides in Soil and Ground Water

MICHAEL TRUEX
Pacific Northwest National Laboratory

Context
- Attenuation and transport processes are important to consider for remediation decisions in the vadose zone and groundwater.
 - Important for both remedy selection and remedy implementation.
- Remedy technology decisions consider the intersection of:
 - Radionuclide characteristics
 - The target problem
 - Remedy functionality
 - Remediation objective

Outline
- Case study background – Hanford Site
- Attenuation and transport processes
- Remedy selection considerations
- Remedy implementation considerations
- Conclusions

Hanford Background

Key Contaminants
- Tc-99
 - 410 Ci discharged; No breakthrough to groundwater; Most mass between 30 - 50 meters below surface.
- Uranium
 - 36,000 Kgs discharged; Minimal breakthrough to groundwater; Unknown mobility and presence in deep vadose zone.
- I-129
- Chromium

Central Plateau: Deep Vadose Zone Sites
- Uranium
 - 10,000 Kgs discharged; ~20 Kgs in groundwater @ 150 X standard.
- Tc-99
 - ~40 Ci discharged; Groundwater @ ~100 X standard.
- I-129
- Chromium

DOE 2017
Remedy Selection and Implementation for Radionuclides in Soil and Ground Water

Michael Truex–2

Attenuation and transport processes

What do we need to know?
- Vadose Zone
 - Quantify vadose zone contaminant flux to groundwater
 - Determine where and what type of mitigation is needed
- Groundwater
 - Quantify plume dynamics and secondary source characteristics
 - Exit strategy for P&T
 - Transition to MNA
- Coupled System
 - Assess continuing and long-term sources not related to current plumes

Central Plateau: Deep Vadose Zone Sites

Key Contaminants
- Tc-99 Uranium, I-129, Chromium

Central Plateau: Deep Vadose Zone Sites

Attenuation and transport processes

Processes
- Hydraulic attenuation
- Adsorption
- Transformation
- Sequestration

Ramifications
- Temporal profile of source flux and concentrations
- Inventory of mobile contaminants
- Spatial distribution information
- Plume dynamics
Remedy Selection and Implementation for Radionuclides in Soil and Ground Water

Michael Truex

Attenuation and transport processes

- Vadose zone attenuation/transport SAP
 - Target sampling and analysis for
 - Important hydrologic units
 - Representative contaminant discharges
 - Problematic waste sites
 - Define analyses based on national guidance for attenuation tailored to site needs
 - COC and primary biogeochemistry
 - Sequential extractions and other indicator diagnostics
 - Leaching or batch Kd studies to support estimating transport parameters
 - Hydraulic/physical properties where needed to support model configuration

Reaction and Mobility – Vadose Zone

Distribution and Mobility

Source characteristics (location/flux)

Evaluation of VZ Transport

- Contaminant Distribution
 - Geophysical logging
 - Spectral gamma log
 - Neutron moisture log
 - Geophysics
 - Electrical Resistivity Tomography

Reaction and Mobility - Groundwater
Remedy Selection and Implementation for Radionuclides in Soil and Ground Water

Technology evaluation
- Treatability tests and assessments
 - Determine technology in relation to radionuclide characteristics
 - the target problem
 - remedy functionality
 - remediation objectives
- Examples
 - Soil flushing
 - Surface barriers/desiccation
 - Uranium sequestration

Source characteristics (location/flux)

Surface Barrier
- Effect of drainage

Geochemical stabilization – vadose zone
- Ammonia gas for uranium sequestration

Remedy Implementation
- Vadose zone remediation target
 - Where
 - What chemical form
 - How much flux reduction
- Diminishing plumes
 - How much is needed
 - Secondary or continuing sources
- Transition to MNA
- Current plumes versus long-term sources

Remedy Implementation
- Adaptive Site Management
 - National Research Council
 - ITRC
 - Remediation Management of Complex Sites
 - http://rmcs-1.itrcweb.org/
- Exit Strategies (P&T)
 - http://bioprocess.pnnl.gov/Pump-and-Treat.htm
- Monitoring
 - Objectives based
 - Performance metrics
 - Transition for long-term
Remedy Selection and Implementation for Radionuclides in Soil and Ground Water

References

- Johnson TC and BS Stephens. 2013. Re-inversion of Surface Electrical Resistivity Tomography Data from the Hanford Site in Complex. PNNL-20539, Pacific Northwest National Laboratory, Richland, WA.
- Serne R, et al. 2010. Conceptual Models for Migration of Key Groundwater Contaminants Through the Vadose Zone and into the Upper Unconfined Aquifer Below the B-Complex. PNNL-19277, Pacific Northwest National Laboratory, Richland, WA.