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Driving Force 
 Global Population Increase and Civilization 

(6.91 billion, by 1.1% in 2009) 

GlobalAnnual Production of Zn, Pb, 
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Global Perspective 

of Pollution by Heavy Metals/Trace 
Elements 

How is the Earth Surface polluted 
by Heavy Metals/Trace Elements? 
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Annual production of As since Industrial Gross As Production, As Production from 
Age since Industrial Age Petroleum and Coal since Industrial Age 
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Global Nuclear Radionuclide Pollution 

Nuclear Energy 

 With the fast growth of global population, the world consumption of 
energy has been continuously increasing at an annual rate of 2-3%. 
Fossil fuel energy is the major source of current global energy 
consumption (37% petroleum, 25% coal and 22% natural gas) 

 Due to increasing cost of fuel energy supplies and global warming, 
nuclear energy has become a promising emission-free clean energy. 
Currently, nuclear energy accounts for 6% and 8% of the total 
energy consumption in the world and the U.S., respectively 

Nuclear Power Plant Accidents 

 99 nuclear power plant accidents worldwide 

 4 major accidents including the most recent Fukushima Daiichi 
nuclear disaster (2011), Chernobyl disaster (1986), Three Mile 
Island accident (1979), and the SL-1 accident (1961). 

 Chernobyl: 137Cs, 90Sr, 238Pu and 241Am 

 Fukushima Daiichi: 134Cs, 137Cs, 60Co and 131I 

 On the other hand, radionuclides were in colloids of groundwater of 
nuclear ground detonation sites such as the Nevada Test Site. 
Dissolved organic carbon mobilized actinides (Am, Pu, Np and U) in 
the groundwater of these sites. 

Developing Novel Nanomaterials for 
Removing Radionuclides and Heavy 

Metals from Water 

To functionalize meso silica for adsorption 
of Cs, Co, and Sr in contaminated water 

 Characterization 
Particle Size and Zeta Potential 
FTIR and Raman Spectroscopy 
TEM Images 

Adsorption of Cs, Sr, and Co on thiol-
functionalized MCM-41 
Prepare a mix solution of CsNO3, Sr(NO3)2, and 
Co(NO3)2 at serial concentrations. Add sorbents, 
shake and filter supernatant. Inductively coupled 
plasma-mass spectrometry (ICP-MS) was applied. 

TEM pictures of MCM-41-SH (a and b). 
The pore sizes were indicated as arrows, 
measured as 3 nm or 6 nm. 

MCM-41 (Mobil Composition of Matter No. 41) is a 
mesoporous alumosilicate with a hierarchical structure. 
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FTIR spectra of MCM-41-SH and MCM-41. 
The weak peak around 2600 cm-1 indicated 
the presence of the SH group 

Raman spectra of MCM-41 and MCM-41-

SH. Aliphatic carbon chains appeared from 

600 cm-1 to 1300 cm-1; the peak around 

2600cm-1 confirmed the existence of –SH 

function group. 
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Freundlich model of Cs adsorption from water on MCM-41-SH 

Cs adsorption isotherm from water on MCM-41-SH 

Langmuir Model Freundlich Model 

R2 0.93 R2 0.93 

b, L mg-1 0.12 n 1.33 

Q, mg g-1 29.24 Kf 5.28 

Table 1 Comparison of adsorption of Cs on MCM-41-SH as described 
with Langmuir and Freundlich models 

This study indicated that commercially available MCM-41 after being functionalized became more selective on Cs, one 

of elements with the most difficult to remove. For the next stage study, I consider to make sorbent recyclable. 

Developing meso-silica templated nano 
carbon for removing Cs 

 Mesosilica has been used as a stable template to 
synthesize mesoporous carbon with various functional 
groups such as hydroxyl, carboxyl, and carbonyl groups, 
etc. 

 Carbon Precursor 
 Ferulic acid, as the carbon precursor, was used for the adsorption of 

Cs(I) and other several major nuclides such as Co(II) and Sr(II). 

 Ascorbic acid as C precursor and binding to nano magnetite Fe3O4, 
for removing Hg(II) and Pb(II). 

Ferulic acid Ascorbic acid 

 Characterization 

TEM, FTIR, and BET are applied to illustrate functional groups and pore 
structure. 

TEM images of ferulic acid-NC (a) and ascorbic acid-NC (b).TEM images of ferulic acid-NC (a) and ascorbic acid-NC (b). 

4 



        
 

    

       

      

      

      

      

   

         

     

     

      

      

    

       

     

     

      

  

      

 

      
   

   
     
    

   

   
     
  

  
     
  

            

         

 
   
  

  
   

    
 

             

     

     

  

    

          

            

Use of Nanotechnology in Remediation of Radionuclides and Frank (Fengxiang) X. Han 
Heavy Metals 

FTIR 

FTIR spectra of ferulic acid-NC (a) and 

ascorbic acid-NC (b) (upper figure) and 

BET isotherm of two nano carbons (lower 

left). Magnetic effect after a permanent 

magnet was applied to the ascorbic acid-

NC (lower right). 

Kinetic study of Co, Sr, and Cs with 0.3 

g/L ferulic acid-NC at 25℃ with 

pH=6~7. Kinetic data (a), pseudo-first 

order (b), and pseudo-second order (c) 

were shown. All three elements fit 

pseudo-second order well. 

Kinetic study of Hg with 0.3 g/L 

ascorbic acid-NC at 25℃ with pH=6~7. 

Kinetic data (d), pseudo-second order 

(e), and pseudo-first order (f) were 

shown. 

b 

c f 

e 

d 
a 

Co, Sr, Cs on Ferulic-NC Hg on Ascorbic-NC 

Adsorption Kinetics 

Adsorption Isotherms of Co, Sr and Cs: 
Phase I and II 

Adsorption isotherms of 
Co (a), Sr(c), and Cs(e) 
with 0.3 g/L ferulic acid-
NC at 25℃ with pH=6~7: 

Langmuir model of 
Co(b), Sr(d), and Cs(f) for 
Phase I; 

Freundlich model of 
Co(g), Sr(h), and Cs(i) for 
Phase II. 

Adsorption isotherm of Hg(a) and Pb(c), with 0.3 g/L ascorbic acid-NC, at 

25℃, with pH=6~7: Langmuir model of Hg(b) and Pb(d). 

Thermodynamic 
study of Hg(a) and 
Pb(c) on ascorbic-
NC. Van’t Hoff 
model linear plot 
was applied to Hg(b) 
and Pb(d). 

Table 3 Thermodynamic parameters of Hg and Pb at 10 and 20 mg/L, on ascorbic acid-

NC with 0.3 g/L at pH~6,7. 

Metals Temperature Initial Concentrations of metals 
0C 10 mg/L 20 mg/L 

ΔG lnKC ΔH ΔS R2 ΔG lnKC ΔH ΔS R2 

-1
(kJ mol ) (kJ mol-1) -1 K-1(J mol ) -1(kJ mol ) (kJ mol-1) -1 K-1(J mol ) 

Hg 15 -1.51 0.63 1 -1.83 0.76 0.74 
30 -2.1 0.88 11.6 45.6 -2.73 1.09 7.93 34.3 
45 -2.6 1.09 -2.83 1.07 

Pb 15 -0.57 0.24 0.037 1.01 -0.42 0.38 
30 0.8 -0.32 2.64 -1.05 
45 -1.07 0.4 -1.88 0.71 

-Δ G and + ΔH indicates spontaneous adsorption process; + ΔH indicates endothermic adsorption process 
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Adsorption of Cs using magnetic 
heteroatom-functionalized calixarene 
complex 

Calixarene is a building block material in the macrocyclic molecular group. Its 
unique character was the three-dimensional pre-organization, making it a 
potential candidate of receptor to many cations and anions, which exhibited 
potentials for the treatment of nuclear wastewater. 

The present study is to synthesize the stable and 
efficient magnetic calixarene composite for the 
treatment of Co2+, Sr2+, and Cs+. Two types of 
commercially available upper-rim sulfur or 
phosphorous functionalized calixarene were 
applied and compared. Meso-silica as the 
anchor was applied to connect the Fe

3 
O 

4 
part 

and the calixarene part. 

 Experiment 

Synthesis 

Characterization 
TEM, FTIR, SEM, XRD, BET methods will be applied to elucidate the unique structure of the calix 
complex. 
Adsorption 
Cs (from 0 to 2000 mg/L) and Sr solution were prepared. 
To examine any competitive behavior with other heavy metals, mix solutions of Sr, Co, Cd, Hg, and 
Pb from 0 to 2000 mg/L. 

TEM images of Fe
3 
O 

4 
NP (a), Si-MN (b), S-Si-MN (c), and P-Si-

MN(d). 
High resolution TEM pictures showed S-Si-MN (a), P-Si-MN 
(b), and Si-MN (c). 

SEM results of P-Si-MN (a&b) and S-Si-MN (c&d). 
Energy Dispersive Spectroscopy (EDS) analysis showed the elemental mapping of each composite. On the top is the SEM 
image of S-Si-MN, and the corresponding elemental mapping results are on the right. The brighter the color, the higher percentage 
of the element is in that zone. On the bottom are the SEM image of P-Si-MN and the elemental mapping. 

P S MN S S MN 
O Si P Fe O Si S Fe 

We gh 
% 29.98 26.65 26.83 16.54 40.47 32.77 7.01 19.75 

A om 
c % 47.02 23.82 21.73 7.43 59.26 27.33 5.12 8.29 
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FTIR spectra of phosphoryl group calixarene (a), sulfonic group calixarene (b), S-

Si-MN (c), P-Si-MN (d), and Si-MN (e). 
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Cs Adsorption in Cs Alone System 

Adsorption of Cs on S-Si-MN. (a) Isotherm; (b) Freundlich model and P-Si-MN (c) isotherm; (d) Freundlich model. 

Far right shows magnetic separation 

Sr Adsorption in Sr Alone System 

In the individual system, the adsorption of Sr on P-Si-MN. (a) isotherm; (b) Freundlich 

model; (c) Langmuir model on Phase I; (d) Langmuir model on Phase II. 

Co Adsorption in Multimetal system 

In the multi-cation system, the adsorption isotherm of Co on S-Si-MN (a) and P-
Si-MN (c); Freundlich model from S-Si-MN (b) and P-Si-MN (d). 

Sr Adsorption in a Multimetal System 

In the multi-cation system, the adsorption of Sr on S-Si-MN (a) isotherm & (b) Freundlich model; on P-Si-MN (c) isotherm 

& (d) Freundlich model. The inlet of Fig. d showed the Langmuir model of Phase I. 

In the multi-cation system, the adsorption isotherm of Cd on S-Si-MN (a) and P-Si-MN (c); Freundlich model 

from S-Si-MN (b) and P-Si-MN (d). 

Cd Adsorption in a Multimetal System 
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In the multi-cation system, the adsorption isotherm of Hg on S-Si-MN (a) and P-Si-MN (c); Freundlich model 

from S-Si-MN (b) and P-Si-MN (d). 

Hg Adsorption in a Multimetal System 

In the multi-cation system, the adsorption isotherm of Pb on S-Si-MN (a) and P-Si-MN (c); Freundlich model 

from S-Si-MN (b) and P-Si-MN (d). 

Pb Adsorption in a Multimetal System 

Comparison of Adsorption Capacity 

Adsorbents Adsorbates pH 

Maximum 
adsorption capacity 

(mg/g) References 
am nated 
graphene ox de 
NP 

Co 
116.35 Fang et al., 2014 

Graphene ox de 
hydroxyapat te 
NP 

Sr 
2-4 702.18 Wen et al., 2014 

Graphene ox de 
comp exed 

Cs 
184.74 Sun et al., 2013 

w th n trogene 
and oxygene 
groups 

Sr 
147.20 

P S MN 6-7 This study Co 900 
Sr 30000 
Cs 200 

Other Soil Remediation in my group 

 Phytoremediation 

 Bioremediation 

 Electronic Kinetic Remediation 

 Coupled Electronic Kinetic-Phytoremediation 

 Soil Washing 

 Coupled Electronic Kinetic-Soil Washing 

Conclusion 

Our lab developed a series of promising meso/nanomaterials for cleaning up 
Cs, Sr, Co and other radionuclides as well as heavy metals (Cd, Hg, Pb) in 
contaminated water. 

This study shows the promise of novel meso/nanomaterials in removing 
common radionuclides and heavy metals and provides alternative solutions for 
water pollution from nuclear industry development. 
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