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Presentation Overview

• Evaluating Remediation Technologies 

• Sorption 

• In Situ Technologies

• Dealing with Investigation-Derived Waste (IDW)

• Wrap-Up
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Summary of Available Technologies – Drinking Water Treatment 

Technology Category Technology Maturity/Availability

Sorption 

Activated Carbon* Commercialized, can be purchased from vendors

Anion Exchange Resin* Commercialized, can be purchased from vendors

Biochar Field Pilot Scale, not commercially available

Zeolites/Clay Minerals Commercialized, can be purchased from vendors

Membrane Filtration
Reverse Osmosis and 
Nanofiltration+ Commercialized, can be purchased from vendors

Coagulation Specialty Coagulants Full Scale application being conducted by researchers

Redox Change Electrochemical Field Pilot Scale, not commercially available

Other Sonochemical Field Pilot Scale, not commercially available

Evaluating Remediation Technologies 

* Technologies that will be discussed
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Summary of Available Technologies – Soil Treatment 

Technology Category Technology Maturity/Availability

Sorption and Technologies

Modified Carbon* Commercialized, can be purchased from vendors

Minerals/Modified Minerals* Commercialized, can be purchased from vendors

Excavation Disposal
To Landfill Commercialized 

To Incinerator Commercialized 

Thermal Field Pilot Scale, commercially available

* Technologies that will be discussed 
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Consider Effect of Prior Remediation for Co-Contaminants on PFAS 

• Benzene plume 

• Oxygen injections at yellow

• Elevated levels of PFAA at location of historical and present 
benzene plume – lacking in areas with no O2 injections

• Fourfold difference in Kd between PFHxA and PFOA yet 
their plume overlapped – likely due to in situ transformation 
of precursors

• Navy currently conducting similar study under NESDI
Reference Evidence of Remediation-Induced Alteration of Subsurface Poly- and Perfluoroalkyl Substance Distribution at a
Former Firefighter Training Area Meghan E. McGuire, Charles Schaefer, Trenton Richards, Will J. Backe, Jennifer A. Field,
Erika Houtz,, David L. Sedlak, Jennifer L. Guelfo, Assaf Wunsch, and Christopher P. Higgins

Evaluating Remediation Technologies 
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Pump-and-Treat

• At drinking water wellhead

• At point of use

• To control plume size/spread

• At base boundary to prevent plume migration

Only practical treatment for groundwater available
Key
Point

Wellhead Treatment

Point of Entry Treatment

Sorption FRTR 2018:  PFAS Emerging Contaminants and Remediation Technologies
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Granular Activated Carbon (GAC)

Material

• Made from bituminous coal or coconut

• Highly porous, large surface area

Application

• Typically used in packed-bed flow-through vessels

• Operate in series (lead-lag) or parallel

• Virgin or Reactivated GAC 

http://store.ecologixsystems.com/detail/index.cfm?nPID=294

Sorption 

Reagglomeration

Coal Blend Pulverizing Agglomeration Crushing Baking Activation Screening Finished
Product

Even Activation
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Granular Activated Carbon (cont.)

Mechanism

• Adsorption on surface process, physical mass transfer

• No chemical degradation or transformation

Effectiveness

• Capable of 90 to >99% removal efficiency

• Individual PFAS have different GAC breakthrough times
– e.g., GAC capacity for PFOS>PFOA

• Influent conc. for <5 Carbon PFAS typically lower

• High DOC reduces effectiveness

Reference -Yu, Q., R. Zhang, S. Deng, J. Huang, G. Yu, 2009.
"Sorption of perfluorooctane sulfonate and perfluorooctanoate 

on activated carbons and resin: Kinetic and isotherm study." 
Water Research, 43, 1150-1158.

PFAS <5 carbons shorter
breakthrough times

Key
Point

Sorption 

Activated Carbon

hemi-micelle

micelle
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Reactivation of PFAS Contaminated Granular Activated Carbon

Thermal Reactivation Process

• Reactivation temperature 1,300°F

• PFAS pyrolysed to carbon char

• Lower CO2 footprint than making virgin GAC

• Reactivated carbon may be just as effective as virgin carbon

Reactivation furnace 
under negative 
pressure and 

nitrogen 
environment

Reactivation furnace 
under negative 
pressure and 

nitrogen 
environment

Furnace off gas 
passed through after 

burn to destroy 
organics

Furnace off gas 
passed through after 

burn to destroy 
organics

Emission stream 
passed through 

chemical scrubber to 
remove acid gases

Emission stream 
passed through 

chemical scrubber to 
remove acid gases

Final treatment 
through baghouse 
filters to remove 

particulate matter 

Final treatment 
through baghouse 
filters to remove 

particulate matter 

Process is expensive and energy intensive
Key
Point
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Key
Point

NEWMOA PFAS Technical Workshop – Activated Carbon 
Don Ivey and John Matthis May 2017

Sorption 

Background TOC 1.42 mg/L

Simulated Empty Bed
Contact Time (EBCT)

10 minutes

Concentration of PFOA 920 ng/L (ppt)

Background TOC 0.16 mg/L

Simulated Empty Bed
Contact Time (EBCT)

10 minutes
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Case Study – Point of Entry Treatment – Vermont Residences 

• PFOA contamination from 
textile coating at 
CHEMFAB®

• 541 samples from private 
wells 

• Bottled water delivered to 
residents

• 11 homes connected to 
municipal water

• 255 POET systems 
installed

Sorption 
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Case Study – POET Vermont

• Initially sampled once per month for 3 months
• Influent, midpoint and effluent
• Influent PFOA Concentration >1,000 ppt: sample every 3 months
• Influent PFOA Concentration >200 ppt to <1,000 ppt sample every 6 months
• Influent PFOA Concentration <200 ppt every 12 months

Sorption FRTR 2018:  PFAS Emerging Contaminants and Remediation Technologies
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Case Study POET Vermont – Results

• Influent concentrations vary from <20 ppt
to 4,600 ppt

• Volume treated per unit from 50 gal over
one month to 37,000 gal over 3 months

• Pre and post filter replaced every 4 months

• UV lap replaced every 12 months

• GAC replacement assumed every 2 years

• Swap lead and lag tank then ship GAC
media to vendor

Reference: Lessons Learned on Vermont POET Installations and
Operations at Residences Impacted by PFASs. Richard Spiese.

Sorption 
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Case Study – NAS Brunswick, ME GWETS

• Former Naval Air Station in Brunswick, ME, BRAC 2011

• Treating CVOCs at GWETS using air stripping and GAC (vapor and liquid phase)

• Recovered over 500 kg VOCs since 1995; removal now limited by back diffusion rate, 
asymptotic range

• 1,4-Dioxane addressed by addition of HiPOx® unit

• PFAS removed via liquid-phase GAC

– PFOA breakthrough determines changeout

– Shorter-chain PFAS, carboxylates, break through
earlier

Sorption FRTR 2018:  PFAS Emerging Contaminants and Remediation Technologies
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Case Study – NAS Brunswick, ME GWETS – Results

Sorption 
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Case Study – NAS Brunswick, ME GWETS – Results (cont.)
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Case Study – NAS Brunswick, ME GWETS – Results (cont.)
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Figure 3: PFBA Concentrations
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Ion Exchange

Material

• Synthetic neutral co-polymeric media (plastics) 
with positively-charged exchange sites

• Can be regenerated (produces waste stream) 
or single use (must be disposed of properly)

Application

• Removes anionic PFAS binding to negatively-
charged functional group

• Lead-lag including combination of single use 
and regenerated

Reference: Steve Woodward John Berry Brandon Newman. 2017. Ion Exchange Resin for PFAS
Removal and Pilot Test Comparison to GAC. Remediation Journal Volume 27, Issue 3 Pages 19–27 

Sorption 

Polystyrene polymer chain

Fixed ion exchange group, e.g., quaternary ammonium, — ≡N+, for anion IEX
Divinylbenzene crosslink

Exchangeable counter ion, e.g., chloride ion, Cl-, for anion IEX
Sulfonate group, —SO3

-, of PFAS (e.g., PFOS), replacing exchangeable counter ion

Carboxylate group, —CO2
-, of PFAS (e.g., PFOA), replacing exchangeable counter ion

PFAS carbon-fluorine tail adsorbing to polystyrene polymer chain or divinylbenzene
crosslink via Van der Waals forces

FRTR 2018:  PFAS Emerging Contaminants and Remediation Technologies
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Ion Exchange (cont.)

Mechanism

• Acts as ion exchange resin and adsorbent resin

• Positively charged anion exchange media 

• Removes negatively-charged PFAS from water

Effectiveness

• Reaction kinetics faster than GAC

• Operating capacity higher than GAC 

• Breakthrough varies for different PFAS

• Less frequent media change-outs 

Sorption 

% Removal from GAC (5.6 min EBCT) vs.
Ion Exchange (1.4 min EBCT) 

Ion Exchange Bituminous GAC

%
 R

em
ov

al
 A

fte
r T

re
at

in
g 

14
6 

da
ys

PFOS PFHxS PFOA PFBS PFHpA PFHxA

Anion-Exchange Resin

hemi-micelle
micelle

FRTR 2018:  PFAS Emerging Contaminants and Remediation Technologies 20

Considerations When Using Ion Exchange

• Type and concentration of inorganic ions in groundwater affect PFAS capacity of resin 

• Bench-scale tests recommended to determine most effective resin

• More cost-effective at higher concentrations 

• Organic matter may foul resin

• Co-contaminants compete for resin site 

• Site-specific testing should be performed

Sorption FRTR 2018:  PFAS Emerging Contaminants and Remediation Technologies
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Regeneration of Ion Exchange Resins

• Brine solution can desorb anionic head of PFAS from resin

• Organic solvent-like methanol or ethanol can desorb C-F tail 

• Surfactants with both nonionic and anionic properties can be used as regenerants

• Most successful has been organic solvents and sodium chloride 

• The solution used to regenerate may then need to be concentrated to minimize the 
volume of waste

Shipped back to vendor for regeneration
Key
Point
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Case Study – Comparison of GAC with Ion Exchange at Pease AFB

• Historic use of AFFF for firefighting training 

• Ion Exchange – ECT Sorbix A3F

• Note 6:2 FS 2nd highest concentration PFAS

• GAC – Calgon Filtrasorb® 400 (F400)

Reference: Steve Woodard John Berry Brandon Newman. 2017 Ion Exchange Resin for PFAS Removal and Pilot Test Comparison to GAC. Remediation Journal Volume 27, Issue 3 Pages 19–27 

Sorption FRTR 2018:  PFAS Emerging Contaminants and Remediation Technologies
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Case Study – Comparison of GAC with Ion Exchange at Pease AFB (cont.)

GAC
• 4 vessels in series
• Each containing 9 gal F400
• Each vessel 5 min EBCT, overall 20 min EBCT
• Samples collected at influent and after each

vessel weekly for 8 weeks
• At 1.8 gpm treated 100,486 gal water

(11,165 bed volumes)

Ion Exchange
• 3 vessels in series
• Each containing 9 gal resin
• Each vessel 2.5 min EBCT, overall 7.5 min EBCT
• At 3.6 gpm treated 422,645 gal water (46,961 BVs)
• Samples collected routinely at influent and effluent

Sorption 
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Case Study – Comparison of GAC with Ion Exchange at Pease AFB (cont.)

GAC

Ion Exchange

Entire Pilot-Scale Setup

Sorption FRTR 2018:  PFAS Emerging Contaminants and Remediation Technologies
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Case Study – Comparison of GAC with Ion Exchange at Pease AFB (cont.)

PFOS PFOA
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Case Study – Comparison of GAC with Ion Exchange at Pease AFB (cont.)

PFBA PFBS
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Case Study – Comparison of GAC with Ion Exchange at Pease AFB (cont.)

• Three regeneration trials using proprietary blend of organic solvent and brine
Step 1 

Purge lead vessel with 
1 BV 10% brine to 

prime resin for 
regeneration 

Step 2
Pump 10 BV 

regenerant through 
resin counter flow 

Step 3 

Pump 10 BV potable 
water to rinse resin 

counter flow 

Step 4 
Return resin vessel to 

full service

TOTAL PFAS

Regenerant Solution Recovery

• Distill off solvent fraction into regenerant tank for reuse, 
left with concentrated brine PFAS fraction

• OR conduct superloading – process concentrated brine 
PFAS solution through adsorption media then recycle 
brine solution
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Case Study – Comparison of GAC with Ion Exchange at Pease AFB (cont.)

• Both GAC and Ion Exchange Resin can remove PFOS and PFOA from groundwater to 
below EPA LHA

At 5 min. contact time

• Resin treated 8X more BV than GAC before breakthrough of PFOS observed 

• Resin treated 6X more BV than GAC before breakthrough of PFOA observed 

• Resin removed 1.66 mg PFAS per gram of resin whereas GAC removed 0.40 mg 
PFAS per gram GAC

• Resin could be regenerated in the field

Sorption FRTR 2018:  PFAS Emerging Contaminants and Remediation Technologies
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In Situ Stabilization (ISS)

• Use of amendments for adsorbing and stabilizing PFAS in soil and groundwater

• GAC, stabilizers, and modified minerals (organoclays) 

• Commercially available

• Additional amendments being developed

• Critical to monitor soil leachate to determine treatment effectiveness

• Limited full-scale application in U.S. (more overseas)

In Situ Technologies FRTR 2018:  PFAS Emerging Contaminants and Remediation Technologies 30

Activated Carbon for In Situ Water Treatment – PlumeStop®

Material 

• Colloidal activated carbon

• 1-2 µm sized particles of carbon suspended in water 
by organic polymer dispersion chemistry

Application

• In situ sorbent technology sorbs PFOS and PFOA 
from aqueous phase 

• Treats dissolved-phase contaminants

• Applied by low-pressure injections

In Situ Technologies FRTR 2018:  PFAS Emerging Contaminants and Remediation Technologies
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Activated Carbon for In Situ Water Treatment – PlumeStop® (cont.)

Mechanism

• Coats surface of soil 

• Contaminants in dissolved phase then sorb to carbon

• Does not destroy PFAS, immobilizes PFAS in place

• Occupies just 0.1% soil pore volume 

Effectiveness

• Reduces aqueous concentration to below 70 ng/L

• Radius of Influence can be up to 25 ft

• Can be applied as multiple barriers perpendicular to plume

In Situ Technologies RITS 2018: PFAS Remediation: Technologies, Guidance, and Application

A Scanning Electron Microscope (SEM) Image of 
Sand Grains With and Without a Coating of Carbon 

32

In Situ Soil Treatment – Aluminum-Based Sorbent – Rembind Plus®

Material

• Aluminum hydroxide, activated carbon, organic matter, and kaolinite

Application

• Apply to soil in ~2 to 5% by weight

• Adjust to 30% moisture content

• Binding occurs in 24 hours

• Pilot tested for water treatment

In Situ Technologies FRTR 2018:  PFAS Emerging Contaminants and Remediation Technologies
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In Situ Soil Treatment – Aluminum-Based Sorbent – Rembind Plus® (cont.)

Mechanism

• Aluminum hydroxide binds to functional head of PFAS by electrostatic interactions

• Activated carbon and organic matter binds to tail via by hydrophobic interactions and 
Van der Waals forces

In Situ Technologies

Large complex organic humus molecule
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Aluminum-Based Sorbent for GW Case Study – Air Force Site

• Historical use of AFFF at site

• Full-scale GAC system: two 20,000-lb GAC vessels in 
operation to remove PFOS/PFOA from groundwater

• Goal of pilot study to evaluate sorption capacity of 
RemBind Plus®

In Situ Technologies
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Aluminum-Based Sorbent for GW Case Study – Air Force Site (cont.)

• 30-gal batch reactor pilot test set up next to GAC system

• 30 gal of contaminated water mixed 1.135 kg aluminum-
based sorbent for one hour and allowed to settle overnight

• Next day treated GW moved to effluent tank and 
contaminated GW added to tank with amendment without 
replacing amendment

• Run for 2 weeks treating 280 gal water

• Monitored for 53 PFAS compounds and TOP assay

• TOC also monitored

In Situ Technologies FRTR 2018:  PFAS Emerging Contaminants and Remediation Technologies 36

Aluminum-Based Sorbent for GW Case Study – Air Force Site – Results

• 18 PFASs detected frequently

• Removal ranged from 80 to 100% after 155 gal

• Slight decrease in removal beyond 155 gal

In Situ Technologies

Top Assay Influent

PF
A

S 
C

on
ce

nt
ra

tio
n

(n
m

ol
e/

L)

Total PFOA PFOS PFSAs Precursors

35

30

25

20

15

10

5

0

PFAS precursors unable
to be directly analyzed

Inf-Pre TOPA

Inf-Post TOPA
PFOA Sorbed
PFOS Sorbed

Pre-Treatment PFOS
% PFOS Removal

Pr
e-

Tr
ea

tm
en

t C
on

ce
nt

ra
tio

n 
(µ

g/
L) 5.0

4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

3000

2500

2000

1500

1000

500

0

So
rb

ed
 M

as
s 

(µ
g/

kg
)

0 50 100 150 200 250 300

0 50 100 150 200 250 300

Groundwater Volume (gal)

Groundwater Volume (gal)

PF
O

S 
R

em
ov

al
 (%

)

100
95
90
85
80
75
70
65
60
55
50

% PFOS Removal

Cumulative Removed PFOA and PFOS
(µg/kg-RemBind Plus®) from Groundwater

FRTR 2018:  PFAS Emerging Contaminants and Remediation Technologies



Treatment Technologies for PFAS Site Management Danko–7

37

Types of IDW

Liquid Waste

• Purge water from groundwater sampling 

• Concentrated AFFF 

Solid Waste

• Well installation waste (soil cuttings)

• Soil cuttings from core sampling 

• Spent GAC

• Spent ion exchange resin

• Soil from excavations
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Challenges with Handling IDW

• PFAS are considered non-hazardous (can be disposed of in any landfill) 

• Landfill refusal to accept PFAS waste

• Potential for future liability

• Risk of landfill leachate 

Dealing with Investigation-Derived Waste (IDW)

Consideration should be given to taking liquid waste to existing onsite 
GWETS if available

Key
Point
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Considerations for Liquid IDW

• If PFAS concentrations are below regulatory levels, water may be considered to be 
disposed to sanitary sewer/POTW

• At sites where there is a PFAS GWETS, purge water should be considered to be 
treated in that system with operator approval 

• Consideration should be given to have purge water pass through a drum of GAC, held 
in a receiving tank pending analysis

• If below regulatory values, GW may be able to be discharged to the sanitary 
sewer/POTW

• Purge water may be able to be sent to an off-site treatment facility willing to accept it
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Considerations for Liquid IDW

• Currently sending to a landfill or a treatment facility may be the only choice

• As treatment becomes more common, the soil cuttings may be treatable on-site
(e.g., thermal)

• PFAS waste is non hazardous*, so 90 day rule may not apply

• Option – retain material on site as treatment approaches and policies are developed

• EXWC conducting research on treatment for IDW and source zone soils
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Key Points

• GAC may be the only practical treatment for groundwater to date

• PFAS <5 carbons much shorter breakthrough times

• Bituminous carbon may perform better than coconut carbon but depends on site 
conditions

• Ion exchange resin may be better at removing PFAS and can be regenerated but may 
be more expensive

• In situ treatment technologies PlumeStop®, RemBind Plus® and MatCARE™ limited 
field demonstrations in U.S.
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NAVFAC Points of Contact

• John Kornuc (NAVFAC EXWC)

– (805) 982-1615

– john.kornuc@navy.mil

• Tony Danko (NAVFAC EXWC)

– (805) 982-4805

– anthony.danko@navy.mil
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Questions and Answers

Wrap-Up FRTR 2018:  PFAS Emerging Contaminants and Remediation Technologies

45

Backup Slides
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Mechanism of Sorption – Electrostatic Interaction 

• Interaction between negative and positive charges

• Strong negative charged shell around CF chain due to fluorine atoms and functional 
group

• Electrostatic bond mainly at functional group sue to stronger negative charge

• To promote electrostatic bond increase ionic strength, ensure pH is not too alkaline

• Example seen in organoclays

Reference Du, Ziwen, Shubo Deng, Yue Bein, Qian Huang, Bin Wang, 
Jun Huang, and Gang Yu. 2014. “Adsorption behavior and mechanism of 
perfluorinated compounds on various adsorbents – A review,” 
Journal of Hazardous Materials, 274, 443-454.

Sorption 

Electrostatic Attraction

PFC molecule

Divalent cation

Positively charged site

Negatively charged site
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Mechanism of Sorption – Hydrophobic Interactions

• Occurs at the electronegative CF chain

• Longer chain more hydrophobic

• Leads to formation of micelles

• Is often stronger than electrostatic repulsion (between negatively-charged tail and 
negatively-charged sorbent)

Sorption 

Hydrophobic Interaction

PFC molecule
Positively
charged site

Electrostatic Repulsion
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Property MatCARE™

Bulk Density (kg m-3) 608

Particle Density (kg m-3) 1,677

Porosity (%) 40

Pore Volume (kg m-3) —

Particle Size 77.4% between 2,000 and 1,180 µm

Surface Area (m2 g-1) 31.91

Reversible Swelling (%) 2.5

Moisture Holding Capacity (%) 50.28

In Situ Soil Treatment Modified Organoclay Sorbent – MatCARE™ 

Material

• Palygorskite-based material modified with 
oleylamine, i.e., amine modified clay sorbent 

Application

• Applied to soil at 10% w/w

• Water content of soil 60%
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In Situ Soil Treatment Modified Organoclay Sorbent – Soil Treatability Studies

• Four soils from fire training areas at overseas Air Force Bases 
• Air-dried, homogenized, and passed through 2-mm sieve
• pH, organic carbon content, and PFOS concentration
• 1 kg of each soil adjusted to 60% moisture, amendment added at 10 g per 100 g soil 
• PFOS-spiked treatment also included (10 ml of PFOS stock solution) then mixed 
• 10 g sample, 3x/yr
• Water extraction

In Situ Technologies

Physico-Chemical Properties of the Soil

Soils pH TOC (%) PFOS (nmol g-1) Texture

Solvent Extracted Water Extracted Sand (%) Silt (%) Clay (%) Textural Class

A 4.8 0.96 3.66 0.52 52.63 25.62 21.74 Sandy clay loam

B 4.9 1.97 148.72 21.13 43.21 21.42 35.37 Clay loam

C 8.1 0.29 32.33 4.72 75.15 9.11 15.74 Sandy loam

D 6.5 2.03 18.52 1.86 57.04 10.93 32.03 Sandy clay loam
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In Situ Soil Treatment Modified Organoclay Sorbent – Results

In Situ Technologies

25°C no spike 25°C spike with 0.2 mmol/kg PFOS

Control Sorbent Control Sorbent Control Sorbent Control Sorbent

Soil A Soil B Soil C Soil D

Control Sorbent Control Sorbent Control Sorbent Control Sorbent

Soil A Soil B Soil C Soil D

%
 R

el
ea

se

%
 R

el
ea

se

14

12

10

8

6

4

2

0

25

20

15

10

5

0

a a 1st quarter
2nd quarter
3rd quarter
4th quarter

1st quarter
2nd quarter
3rd quarter
4th quarter

FRTR 2018:  PFAS Emerging Contaminants and Remediation Technologies

51

Water Treatment – Aluminum-Based Sorbent/GAC Comparison

In Situ Technologies

Aluminum Adsorbent Activated Carbon

Bind short-chain PFAS High efficiency Low efficiency 1, 2

Easy to apply in field Yes No

Availability of large volumes 1-2 weeks 1-2 Months

PFOS adsorption capacity 2,000 µg/g 1,500 µg/g
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Aluminum-Based Sorbent for GW Case Study – AF Site – Future Work

Verify amendment sorption capacity

Optimize dosage to meet EPA Health Advisory

Monitor effectiveness on short-chain PFAS and PFAA precursors

Conduct regeneration trials using proprietary wash solutions
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Aluminum-Based Sorbent for Full-Scale Soil Treatment Case Study

• Airport contaminated with PFAS

• Replacing asphalt – excavated 900 tons of PFAS-contaminated soil

In Situ Technologies

Aviation Rescue and Fire Fighting Services Damaged Asphalt

Aircraft Taxiway

Damaged
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Aluminum-Based Sorbent for Full-Scale Soil Treatment Case Study (cont.)

• 900 tons of contaminated soil

• PFOS total concentration <5.7 mg/kg

• PFOS leachable concentration <180 µg/L (by USEPA Method 1311)

In Situ Technologies

Aircraft Taxiway

Construction of New Apron PFAS-Contaminated Soil 
~900 tonnes
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Aluminum-Based Sorbent for Full-Scale Soil Treatment Case Study (cont.)

• Transported 900 tonnes of soil to municipal waste landfill site

• Treated hotspots with 10% RemBind®

• Validated samples at accredited lab

• Obtained EPA approval for disposal in a purpose-built burial cell

In Situ Technologies

RemBind® Capping

RemBind® Layer

Waste
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Aluminum-Based Sorbent for Full-Scale Soil Treatment Case Study (cont.)

Laying the Amendment Capping Layer Finished Lined Burial Cell
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Aluminum-Based Sorbent for Full-Scale Soil Treatment Case Study (cont.)

• Soil Leachate after Treatment

Activity
Approximate

Cost (US)
Cost per Ton 

(900 Tons)

Landfill disposal fees $63,500 $67

Investigation, bench trials, mixing, and reagent supply $47,500 $50

Total $111,000 $117

In Situ Technologies

Hotspot 1
(µg/L)*

Hotspot 2
(µg/L)*

Compliance Limit
(µg/L)*

PFOS <0.01 <0.01

0.2
PFOA <0.01 <0.01

6:2 Fluorotelomer sulfonate <0.1 <0.1

8:2 Fluorotelomer sulfonate <0.2 <0.2

*Soil leachate concentrations as measured by TCLP at pH 5

• Project Costs
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Aluminum-Based Sorbent for Full-Scale Soil Treatment Case Study (cont.)

• A water authority in Cape 
Cod, MA treated soil with 
amendment in the bottom 
of an excavation before 
backfilling to mitigate the 
risk of PFAS leaching in 
a drinking water source
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96% reduction
PFOS

90% reduction
PFOS

99% reduction
PFOS

98% reduction
PFOS
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