

Presentation Overview

- Evaluating Remediation Technologies
- Sorption
- In Situ Technologies
- Dealing with Investigation-Derived Waste (IDW)
- Wrap-Up

Summary of Available Technologies – Drinking Water Treatment							
Technology Category	Technology	Maturity/Availability					
	Activated Carbon*	Commercialized, can be purchased from vendors					
Sorption	Anion Exchange Resin*	Commercialized, can be purchased from vendors					
	Biochar	Field Pilot Scale, not commercially available					
	Zeolites/Clay Minerals	Commercialized, can be purchased from vendors					
Membrane Filtration	Reverse Osmosis and Nanofiltration*	Commercialized, can be purchased from vendors					
Coagulation	Specialty Coagulants	Full Scale application being conducted by researchers					
Redox Change	Electrochemical	Field Pilot Scale, not commercially available					
Other	Sonochemical	Field Pilot Scale, not commercially available					
* Technologies that will be discussed							
Evaluating Remediation Technolog	gies	FRTR 2018: PFAS Emerging Contaminants and Remediation Technolog					

Summary of Available Technologies - Soil Treatment Technology Maturity/Availability Technology Category Modified Carbon* Commercialized, can be purchased from vendors Sorption and Technologies Minerals/Modified Minerals* Commercialized, can be purchased from vendors To Landfill Commercialized Excavation Disposal To Incinerator Commercialized Field Pilot Scale, commercially available Thermal * Technologies that will be discussed

Pump-and-Treat

- At drinking water wellhead
- At point of use
- To control plume size/spread
- At base boundary to prevent plume migration

Key Point Only practical treatment for groundwater available

Danko-3

Case Study – NAS Brunswick, ME GWETS

- Former Naval Air Station in Brunswick, ME, BRAC 2011
- Treating CVOCs at GWETS using air stripping and GAC (vapor and liquid phase)
- Recovered over 500 kg VOCs since 1995; removal now limited by back diffusion rate, asymptotic range
- 1,4-Dioxane addressed by addition of HiPOx® unit

• PFAS removed via liquid-phase GAC

PFOA breakthrough determines changeout
 Shorter-chain PFAS, carboxylates, break through earlier

<section-header><figure><figure><figure>

Danko-4

Ion Exchange (cont.)

Mechanism

- Acts as ion exchange resin and adsorbent resin
- Positively charged anion exchange media
- Removes negatively-charged PFAS from water
- Effectiveness
- Reaction kinetics faster than GAC
- $\ensuremath{\cdot}$ Operating capacity higher than GAC
- Breakthrough varies for different PFASLess frequent media change-outs

Considerations When Using Ion Exchange

- Type and concentration of inorganic ions in groundwater affect PFAS capacity of resin
- Bench-scale tests recommended to determine most effective resin
- More cost-effective at higher concentrations
- Organic matter may foul resin
- Co-contaminants compete for resin site
- Site-specific testing should be performed

Regeneration of Ion Exchange Resins • Brine solution can desorb anionic head of PFAS from resin • Organic solvent-like methanol or ethanol can desorb C-F tail • Surfactants with both nonionic and anionic properties can be used as regenerants • Most successful has been organic solvents and sodium chloride • The solution used to regenerate may then need to be concentrated to minimize the volume of waste Key Point Shipped back to vendor for regeneration

Case Study – Comparison of GAC with Ion Exchange at Pease AFB • Historic use of AFFF for firefighting training • Note 6:2 FS 2nd highest concentration PFAS • Ion Exchange – ECT Sorbix A3F • GAC – Calgon Filtrasorb[®] 400 (F400) Audres Account Ione Accent Market • Concentration PFAS • GAC – Calgon Filtrasorb[®] 400 (F400) Audres Account Ione Market • Concentration PFAS • GAC – Calgon Filtrasorb[®] 400 (F400)

Perfluorobutane sulfonate	PFBS	0.81	1.3	1.1
Perfluorobutanoic acid	PFBA	0.89	2.1	1.3
Perfluoroheptane sulfonate	PFHpS	0.85	1.4	1.1
Perfluoroheptanoic acid	PFHpA	1.6	2.2	1.9
Perfluorohexane sulfonate	PFHoS	18	25	22
Perfluorohexanoic acid	PFHxA	5.9	8.9	7.7
Perfluorooctanoic acid	PFOA	9.1	13	12
Perfluorononanoic acid	PFNA	0.046	0.082	0.054
Perfluorooctane sulfonate	PFOS	4.2	32	26
Perfluoropentanoic acid	PFPeA	3.1	5.1	4.2
Sum of observed PFAS		65	112	94

ລັດດ

0.001

-Lead Res -Lag Resin (5-min EBCT)

10,000 20,000 Bed

PFOS

Bed Vo

Lead Resin (2.5-min EBCT) ____Lag GAC (10-min EBCT) Lag Resin (5-min EBCT) ____USEPA HA: PFOA+PFOS

-Lead GAC (5-min EBCT)

100

10 000 20.000 30.000 40.000 50.00

Lag Resin (5-min EBCT)

-Influent

(J)BH

Case Study - Comparison of GAC with Ion Exchange at Pease AFB (cont.) Case Study - Comparison of GAC with Ion Exchange at Pease AFB (cont.) PFOA PFBA PFBS 2.5 1.2 (1) 100/1 Concentration (µg/L) 1.5 Concentration 9.0 0.5 0.2 0 30,000 40,000 50,000 5,000 10,000 15,000 20,000 25,000 5 000 10,000 Bed Vol reated Bed Volumes Treated ---Lead GAC (5-min EBCT) n (2.5-min EBCT) ---Lag GAC (10-min EBCT) (5-min EBCT) ---USEPA HA: PF0A+PF03 - - Avg. Influent Avg. Jent

In Situ Stabilization (ISS)

- · Use of amendments for adsorbing and stabilizing PFAS in soil and groundwater
- · GAC, stabilizers, and modified minerals (organoclays)
- · Commercially available

In Situ Tec

- · Additional amendments being developed
- · Critical to monitor soil leachate to determine treatment effectiveness
- · Limited full-scale application in U.S. (more overseas)

Activated Carbon for In Situ Water Treatment - PlumeStop®

Material

- · Colloidal activated carbon
- 1-2 µm sized particles of carbon suspended in water by organic polymer dispersion chemistry

Application

- In situ sorbent technology sorbs PFOS and PFOA from aqueous phase
- · Treats dissolved-phase contaminants
- · Applied by low-pressure injections

Danko-5

20,000

GAO

25,000

15,000

----Resin

Danko-6

Aluminum-Based Sorbent for GW Case Study – Air Force Site

· Historical use of AFFF at site

- Full-scale GAC system: two 20,000-lb GAC vessels in operation to remove PFOS/PFOA from groundwater
- Goal of pilot study to evaluate sorption capacity of RemBind Plus[®]

Aluminum-Based Sorbent for GW Case Study – Air Force Site (cont.) 30-gal batch reactor pilot test set up next to GAC system 30 gal of contaminated water mixed 1.135 kg aluminumbased sorbent for one hour and allowed to settle overnight Next day treated GW moved to effluent tank and contaminated GW added to tank with amendment without replacing amendment Run for 2 weeks treating 280 gal water Monitored for 53 PFAS compounds and TOP assay TOC also monitored

In Situ Te

Danko-7

Types of IDW Liquid Waste • Purge water from groundwater sampling • Concentrated AFFF Solid Waste • Well installation waste (soil cuttings) • Soil cuttings from core sampling • Spent GAC • Spent ion exchange resin • Soil from excavations

Challenges with Handling IDW PFAS are considered non-hazardous (can be disposed of in any landfill) Landfill refusal to accept PFAS waste Potential for future liability Risk of landfill leachate Key Point Consideration should be given to taking liquid waste to existing onsite GWETS if available

Considerations for Liquid IDW

- If PFAS concentrations are below regulatory levels, water may be considered to be disposed to sanitary sewer/POTW
- At sites where there is a PFAS GWETS, purge water should be considered to be treated in that system with operator approval
- Consideration should be given to have purge water pass through a drum of GAC, held in a receiving tank pending analysis
- If below regulatory values, GW may be able to be discharged to the sanitary sewer/POTW
- · Purge water may be able to be sent to an off-site treatment facility willing to accept it

Considerations for Liquid IDW

- · Currently sending to a landfill or a treatment facility may be the only choice
- \bullet As treatment becomes more common, the soil cuttings may be treatable on-site (e.g., thermal)
- PFAS waste is non hazardous*, so 90 day rule may not apply
- Option retain material on site as treatment approaches and policies are developed
- EXWC conducting research on treatment for IDW and source zone soils

Key Points

- · GAC may be the only practical treatment for groundwater to date
- PFAS <5 carbons much shorter breakthrough times
- Bituminous carbon may perform better than coconut carbon but depends on site conditions
- Ion exchange resin may be better at removing PFAS and can be regenerated but may be more expensive
- In situ treatment technologies PlumeStop[®], RemBind Plus[®] and MatCARE[™] limited field demonstrations in U.S.

Select References

- ITRC PFAS Remediation Factsheet
- · PFAS Remediation Whitepaper (Internal Navy Document)
- Andres Arias Espana, Victor, Megharaj Mallavarapu, and Ravi Naidu. 2015. "Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): A critical review with an emphasis on field testing," Environmental Technology and Innovation, 4, 168-181.
- Du, Ziwen, Shubo Deng, Yue Bein, Qian Huang, Bin Wang, Jun Huang, and Gang Yu. 2014. "Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents – A review," Journal of Hazardous Materials, 274, 443-454.
- Zhu, Runliang, Qingze Chen, Qing Zhou, Yunfei Xi, Jianxi Zhu, and Hongping He. 2016. "Adsorbents based on montmorillonite for contaminant removal from water: A review," Applied Clay Science, 123, 239-258.
- Merino, Nancy, Yan Qu, Rula Deeb, Elisabeth L. Hawley, Michael R. Hoffmann, and Shaily Mahendra. 2016. "Degradation and Removal Methods for Perfluoroalkyl and Polyfluoroalkyl Substances in Water," Environmental Engineering Science, 33, 615-649.

Mechanism of Sorption – Electrostatic Interaction						
Interaction between negative and positive charges						
 Strong negative charged shell are group 	ound CF chain due to fluorine atoms and functional					
Electrostatic bond mainly at funct	ional group sue to stronger negative charge					
To promote electrostatic bond inc	rease ionic strength, ensure pH is not too alkaline					
Example seen in organoclays	Electrostatic Attraction					
Reference DJ, Zwen, Shido Deng, Yae Bein, Gian Huang, Bin Wang, Jan Huang, and Gang Yu. 2014. "Adaugtion behavior and mechanism of photomatic of Researchese Methods, 274, 443-454.	Compared and the second					
46 Sorption	FRTR 2018: PFAS Emerging Contaminants and Remediation Technologi					

Aluminum-Based Sorbent for GW Case Study – AF Site – Future Work				
Verify amendment sorption capacity				
Optimize dosage to meet EPA Health Advisory				
Monitor effectiveness on short-chain PFAS and PFAA precursors				
Conduct regeneration trials using proprietary wash solutions				

	Aluminum-Based S	Sorbent 1	or Full-S	cale Soil Tr	eatment Case	Study (cont.)
	Soil Leachate after Treatment					
		Hotspot 1 (µg/L)*	Hotspot 2 (µg/L)*	Compliance Limit (µg/L)*		
	PFOS	< 0.01	<0.01			
	PFOA	<0.01	<0.01	0.2		
	6:2 Fluorotelomer sulfonate	<0.1	<0.1	0.2		
	8:2 Fluorotelomer sulfonate	<0.2	<0.2			
	"Soil leachate concentrations as measure	ed by TCLP at pH	5			
	Project Costs					
	Activity Landfill disposal fees Investigation, bench trials, mixing, and reagent supply			Approximate Cost (US)	Cost per Ton (900 Tons)	
				\$63,500	\$67	
				\$47,500	\$50	
	Total			\$111,000	\$117	
57	In Situ Technologies			FR	TR 2018: PFAS Emerging Co	ntaminants and Remediation Technol
-						

